MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2f1fvneq Structured version   Visualization version   Unicode version

Theorem 2f1fvneq 6517
Description: If two one-to-one functions are applied on different arguments, also the values are different. (Contributed by Alexander van der Vekens, 25-Jan-2018.)
Assertion
Ref Expression
2f1fvneq  |-  ( ( ( E : D -1-1-> R  /\  F : C -1-1-> D )  /\  ( A  e.  C  /\  B  e.  C )  /\  A  =/=  B )  ->  (
( ( E `  ( F `  A ) )  =  X  /\  ( E `  ( F `
 B ) )  =  Y )  ->  X  =/=  Y ) )

Proof of Theorem 2f1fvneq
StepHypRef Expression
1 f1veqaeq 6514 . . . . 5  |-  ( ( F : C -1-1-> D  /\  ( A  e.  C  /\  B  e.  C
) )  ->  (
( F `  A
)  =  ( F `
 B )  ->  A  =  B )
)
21adantll 750 . . . 4  |-  ( ( ( E : D -1-1-> R  /\  F : C -1-1-> D )  /\  ( A  e.  C  /\  B  e.  C ) )  -> 
( ( F `  A )  =  ( F `  B )  ->  A  =  B ) )
32necon3ad 2807 . . 3  |-  ( ( ( E : D -1-1-> R  /\  F : C -1-1-> D )  /\  ( A  e.  C  /\  B  e.  C ) )  -> 
( A  =/=  B  ->  -.  ( F `  A )  =  ( F `  B ) ) )
433impia 1261 . 2  |-  ( ( ( E : D -1-1-> R  /\  F : C -1-1-> D )  /\  ( A  e.  C  /\  B  e.  C )  /\  A  =/=  B )  ->  -.  ( F `  A )  =  ( F `  B ) )
5 simpll 790 . . . . . . 7  |-  ( ( ( E : D -1-1-> R  /\  F : C -1-1-> D )  /\  ( A  e.  C  /\  B  e.  C ) )  ->  E : D -1-1-> R )
6 f1f 6101 . . . . . . . . . 10  |-  ( F : C -1-1-> D  ->  F : C --> D )
7 ffvelrn 6357 . . . . . . . . . . . 12  |-  ( ( F : C --> D  /\  A  e.  C )  ->  ( F `  A
)  e.  D )
8 ffvelrn 6357 . . . . . . . . . . . 12  |-  ( ( F : C --> D  /\  B  e.  C )  ->  ( F `  B
)  e.  D )
97, 8anim12dan 882 . . . . . . . . . . 11  |-  ( ( F : C --> D  /\  ( A  e.  C  /\  B  e.  C
) )  ->  (
( F `  A
)  e.  D  /\  ( F `  B )  e.  D ) )
109ex 450 . . . . . . . . . 10  |-  ( F : C --> D  -> 
( ( A  e.  C  /\  B  e.  C )  ->  (
( F `  A
)  e.  D  /\  ( F `  B )  e.  D ) ) )
116, 10syl 17 . . . . . . . . 9  |-  ( F : C -1-1-> D  -> 
( ( A  e.  C  /\  B  e.  C )  ->  (
( F `  A
)  e.  D  /\  ( F `  B )  e.  D ) ) )
1211adantl 482 . . . . . . . 8  |-  ( ( E : D -1-1-> R  /\  F : C -1-1-> D
)  ->  ( ( A  e.  C  /\  B  e.  C )  ->  ( ( F `  A )  e.  D  /\  ( F `  B
)  e.  D ) ) )
1312imp 445 . . . . . . 7  |-  ( ( ( E : D -1-1-> R  /\  F : C -1-1-> D )  /\  ( A  e.  C  /\  B  e.  C ) )  -> 
( ( F `  A )  e.  D  /\  ( F `  B
)  e.  D ) )
14 f1veqaeq 6514 . . . . . . 7  |-  ( ( E : D -1-1-> R  /\  ( ( F `  A )  e.  D  /\  ( F `  B
)  e.  D ) )  ->  ( ( E `  ( F `  A ) )  =  ( E `  ( F `  B )
)  ->  ( F `  A )  =  ( F `  B ) ) )
155, 13, 14syl2anc 693 . . . . . 6  |-  ( ( ( E : D -1-1-> R  /\  F : C -1-1-> D )  /\  ( A  e.  C  /\  B  e.  C ) )  -> 
( ( E `  ( F `  A ) )  =  ( E `
 ( F `  B ) )  -> 
( F `  A
)  =  ( F `
 B ) ) )
1615con3dimp 457 . . . . 5  |-  ( ( ( ( E : D -1-1-> R  /\  F : C -1-1-> D )  /\  ( A  e.  C  /\  B  e.  C
) )  /\  -.  ( F `  A )  =  ( F `  B ) )  ->  -.  ( E `  ( F `  A )
)  =  ( E `
 ( F `  B ) ) )
17 eqeq12 2635 . . . . . . 7  |-  ( ( ( E `  ( F `  A )
)  =  X  /\  ( E `  ( F `
 B ) )  =  Y )  -> 
( ( E `  ( F `  A ) )  =  ( E `
 ( F `  B ) )  <->  X  =  Y ) )
1817notbid 308 . . . . . 6  |-  ( ( ( E `  ( F `  A )
)  =  X  /\  ( E `  ( F `
 B ) )  =  Y )  -> 
( -.  ( E `
 ( F `  A ) )  =  ( E `  ( F `  B )
)  <->  -.  X  =  Y ) )
19 df-ne 2795 . . . . . . 7  |-  ( X  =/=  Y  <->  -.  X  =  Y )
2019biimpri 218 . . . . . 6  |-  ( -.  X  =  Y  ->  X  =/=  Y )
2118, 20syl6bi 243 . . . . 5  |-  ( ( ( E `  ( F `  A )
)  =  X  /\  ( E `  ( F `
 B ) )  =  Y )  -> 
( -.  ( E `
 ( F `  A ) )  =  ( E `  ( F `  B )
)  ->  X  =/=  Y ) )
2216, 21syl5com 31 . . . 4  |-  ( ( ( ( E : D -1-1-> R  /\  F : C -1-1-> D )  /\  ( A  e.  C  /\  B  e.  C
) )  /\  -.  ( F `  A )  =  ( F `  B ) )  -> 
( ( ( E `
 ( F `  A ) )  =  X  /\  ( E `
 ( F `  B ) )  =  Y )  ->  X  =/=  Y ) )
2322ex 450 . . 3  |-  ( ( ( E : D -1-1-> R  /\  F : C -1-1-> D )  /\  ( A  e.  C  /\  B  e.  C ) )  -> 
( -.  ( F `
 A )  =  ( F `  B
)  ->  ( (
( E `  ( F `  A )
)  =  X  /\  ( E `  ( F `
 B ) )  =  Y )  ->  X  =/=  Y ) ) )
24233adant3 1081 . 2  |-  ( ( ( E : D -1-1-> R  /\  F : C -1-1-> D )  /\  ( A  e.  C  /\  B  e.  C )  /\  A  =/=  B )  ->  ( -.  ( F `  A
)  =  ( F `
 B )  -> 
( ( ( E `
 ( F `  A ) )  =  X  /\  ( E `
 ( F `  B ) )  =  Y )  ->  X  =/=  Y ) ) )
254, 24mpd 15 1  |-  ( ( ( E : D -1-1-> R  /\  F : C -1-1-> D )  /\  ( A  e.  C  /\  B  e.  C )  /\  A  =/=  B )  ->  (
( ( E `  ( F `  A ) )  =  X  /\  ( E `  ( F `
 B ) )  =  Y )  ->  X  =/=  Y ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   -->wf 5884   -1-1->wf1 5885   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fv 5896
This theorem is referenced by:  usgr2pthlem  26659
  Copyright terms: Public domain W3C validator