| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2f1fvneq | Structured version Visualization version Unicode version | ||
| Description: If two one-to-one functions are applied on different arguments, also the values are different. (Contributed by Alexander van der Vekens, 25-Jan-2018.) |
| Ref | Expression |
|---|---|
| 2f1fvneq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1veqaeq 6514 |
. . . . 5
| |
| 2 | 1 | adantll 750 |
. . . 4
|
| 3 | 2 | necon3ad 2807 |
. . 3
|
| 4 | 3 | 3impia 1261 |
. 2
|
| 5 | simpll 790 |
. . . . . . 7
| |
| 6 | f1f 6101 |
. . . . . . . . . 10
| |
| 7 | ffvelrn 6357 |
. . . . . . . . . . . 12
| |
| 8 | ffvelrn 6357 |
. . . . . . . . . . . 12
| |
| 9 | 7, 8 | anim12dan 882 |
. . . . . . . . . . 11
|
| 10 | 9 | ex 450 |
. . . . . . . . . 10
|
| 11 | 6, 10 | syl 17 |
. . . . . . . . 9
|
| 12 | 11 | adantl 482 |
. . . . . . . 8
|
| 13 | 12 | imp 445 |
. . . . . . 7
|
| 14 | f1veqaeq 6514 |
. . . . . . 7
| |
| 15 | 5, 13, 14 | syl2anc 693 |
. . . . . 6
|
| 16 | 15 | con3dimp 457 |
. . . . 5
|
| 17 | eqeq12 2635 |
. . . . . . 7
| |
| 18 | 17 | notbid 308 |
. . . . . 6
|
| 19 | df-ne 2795 |
. . . . . . 7
| |
| 20 | 19 | biimpri 218 |
. . . . . 6
|
| 21 | 18, 20 | syl6bi 243 |
. . . . 5
|
| 22 | 16, 21 | syl5com 31 |
. . . 4
|
| 23 | 22 | ex 450 |
. . 3
|
| 24 | 23 | 3adant3 1081 |
. 2
|
| 25 | 4, 24 | mpd 15 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fv 5896 |
| This theorem is referenced by: usgr2pthlem 26659 |
| Copyright terms: Public domain | W3C validator |