MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2initoinv Structured version   Visualization version   GIF version

Theorem 2initoinv 16660
Description: Morphisms between two initial objects are inverses. (Contributed by AV, 14-Apr-2020.)
Hypotheses
Ref Expression
initoeu1.c (𝜑𝐶 ∈ Cat)
initoeu1.a (𝜑𝐴 ∈ (InitO‘𝐶))
initoeu1.b (𝜑𝐵 ∈ (InitO‘𝐶))
Assertion
Ref Expression
2initoinv ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐹(𝐴(Inv‘𝐶)𝐵)𝐺)

Proof of Theorem 2initoinv
StepHypRef Expression
1 eqid 2622 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
2 eqid 2622 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
3 eqid 2622 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
4 initoeu1.c . . . . . 6 (𝜑𝐶 ∈ Cat)
543ad2ant1 1082 . . . . 5 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐶 ∈ Cat)
6 initoeu1.a . . . . . . 7 (𝜑𝐴 ∈ (InitO‘𝐶))
7 initoo 16657 . . . . . . 7 (𝐶 ∈ Cat → (𝐴 ∈ (InitO‘𝐶) → 𝐴 ∈ (Base‘𝐶)))
84, 6, 7sylc 65 . . . . . 6 (𝜑𝐴 ∈ (Base‘𝐶))
983ad2ant1 1082 . . . . 5 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐴 ∈ (Base‘𝐶))
10 initoeu1.b . . . . . . 7 (𝜑𝐵 ∈ (InitO‘𝐶))
11 initoo 16657 . . . . . . 7 (𝐶 ∈ Cat → (𝐵 ∈ (InitO‘𝐶) → 𝐵 ∈ (Base‘𝐶)))
124, 10, 11sylc 65 . . . . . 6 (𝜑𝐵 ∈ (Base‘𝐶))
13123ad2ant1 1082 . . . . 5 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐵 ∈ (Base‘𝐶))
14 simp3 1063 . . . . 5 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵))
15 simp2 1062 . . . . 5 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴))
161, 2, 3, 5, 9, 13, 9, 14, 15catcocl 16346 . . . 4 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐺(⟨𝐴, 𝐵⟩(comp‘𝐶)𝐴)𝐹) ∈ (𝐴(Hom ‘𝐶)𝐴))
171, 2, 4initoid 16655 . . . . . . . 8 ((𝜑𝐴 ∈ (InitO‘𝐶)) → (𝐴(Hom ‘𝐶)𝐴) = {((Id‘𝐶)‘𝐴)})
186, 17mpdan 702 . . . . . . 7 (𝜑 → (𝐴(Hom ‘𝐶)𝐴) = {((Id‘𝐶)‘𝐴)})
19183ad2ant1 1082 . . . . . 6 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐴(Hom ‘𝐶)𝐴) = {((Id‘𝐶)‘𝐴)})
2019eleq2d 2687 . . . . 5 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → ((𝐺(⟨𝐴, 𝐵⟩(comp‘𝐶)𝐴)𝐹) ∈ (𝐴(Hom ‘𝐶)𝐴) ↔ (𝐺(⟨𝐴, 𝐵⟩(comp‘𝐶)𝐴)𝐹) ∈ {((Id‘𝐶)‘𝐴)}))
21 elsni 4194 . . . . 5 ((𝐺(⟨𝐴, 𝐵⟩(comp‘𝐶)𝐴)𝐹) ∈ {((Id‘𝐶)‘𝐴)} → (𝐺(⟨𝐴, 𝐵⟩(comp‘𝐶)𝐴)𝐹) = ((Id‘𝐶)‘𝐴))
2220, 21syl6bi 243 . . . 4 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → ((𝐺(⟨𝐴, 𝐵⟩(comp‘𝐶)𝐴)𝐹) ∈ (𝐴(Hom ‘𝐶)𝐴) → (𝐺(⟨𝐴, 𝐵⟩(comp‘𝐶)𝐴)𝐹) = ((Id‘𝐶)‘𝐴)))
2316, 22mpd 15 . . 3 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐺(⟨𝐴, 𝐵⟩(comp‘𝐶)𝐴)𝐹) = ((Id‘𝐶)‘𝐴))
24 eqid 2622 . . . 4 (Id‘𝐶) = (Id‘𝐶)
25 eqid 2622 . . . 4 (Sect‘𝐶) = (Sect‘𝐶)
261, 2, 3, 24, 25, 5, 9, 13, 14, 15issect2 16414 . . 3 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐹(𝐴(Sect‘𝐶)𝐵)𝐺 ↔ (𝐺(⟨𝐴, 𝐵⟩(comp‘𝐶)𝐴)𝐹) = ((Id‘𝐶)‘𝐴)))
2723, 26mpbird 247 . 2 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐹(𝐴(Sect‘𝐶)𝐵)𝐺)
281, 2, 3, 5, 13, 9, 13, 15, 14catcocl 16346 . . . 4 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐹(⟨𝐵, 𝐴⟩(comp‘𝐶)𝐵)𝐺) ∈ (𝐵(Hom ‘𝐶)𝐵))
291, 2, 4initoid 16655 . . . . . . . 8 ((𝜑𝐵 ∈ (InitO‘𝐶)) → (𝐵(Hom ‘𝐶)𝐵) = {((Id‘𝐶)‘𝐵)})
3010, 29mpdan 702 . . . . . . 7 (𝜑 → (𝐵(Hom ‘𝐶)𝐵) = {((Id‘𝐶)‘𝐵)})
31303ad2ant1 1082 . . . . . 6 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐵(Hom ‘𝐶)𝐵) = {((Id‘𝐶)‘𝐵)})
3231eleq2d 2687 . . . . 5 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → ((𝐹(⟨𝐵, 𝐴⟩(comp‘𝐶)𝐵)𝐺) ∈ (𝐵(Hom ‘𝐶)𝐵) ↔ (𝐹(⟨𝐵, 𝐴⟩(comp‘𝐶)𝐵)𝐺) ∈ {((Id‘𝐶)‘𝐵)}))
33 elsni 4194 . . . . 5 ((𝐹(⟨𝐵, 𝐴⟩(comp‘𝐶)𝐵)𝐺) ∈ {((Id‘𝐶)‘𝐵)} → (𝐹(⟨𝐵, 𝐴⟩(comp‘𝐶)𝐵)𝐺) = ((Id‘𝐶)‘𝐵))
3432, 33syl6bi 243 . . . 4 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → ((𝐹(⟨𝐵, 𝐴⟩(comp‘𝐶)𝐵)𝐺) ∈ (𝐵(Hom ‘𝐶)𝐵) → (𝐹(⟨𝐵, 𝐴⟩(comp‘𝐶)𝐵)𝐺) = ((Id‘𝐶)‘𝐵)))
3528, 34mpd 15 . . 3 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐹(⟨𝐵, 𝐴⟩(comp‘𝐶)𝐵)𝐺) = ((Id‘𝐶)‘𝐵))
361, 2, 3, 24, 25, 5, 13, 9, 15, 14issect2 16414 . . 3 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐺(𝐵(Sect‘𝐶)𝐴)𝐹 ↔ (𝐹(⟨𝐵, 𝐴⟩(comp‘𝐶)𝐵)𝐺) = ((Id‘𝐶)‘𝐵)))
3735, 36mpbird 247 . 2 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐺(𝐵(Sect‘𝐶)𝐴)𝐹)
38 eqid 2622 . . . 4 (Inv‘𝐶) = (Inv‘𝐶)
391, 38, 4, 8, 12, 25isinv 16420 . . 3 (𝜑 → (𝐹(𝐴(Inv‘𝐶)𝐵)𝐺 ↔ (𝐹(𝐴(Sect‘𝐶)𝐵)𝐺𝐺(𝐵(Sect‘𝐶)𝐴)𝐹)))
40393ad2ant1 1082 . 2 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐹(𝐴(Inv‘𝐶)𝐵)𝐺 ↔ (𝐹(𝐴(Sect‘𝐶)𝐵)𝐺𝐺(𝐵(Sect‘𝐶)𝐴)𝐹)))
4127, 37, 40mpbir2and 957 1 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐹(𝐴(Inv‘𝐶)𝐵)𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  {csn 4177  cop 4183   class class class wbr 4653  cfv 5888  (class class class)co 6650  Basecbs 15857  Hom chom 15952  compcco 15953  Catccat 16325  Idccid 16326  Sectcsect 16404  Invcinv 16405  InitOcinito 16638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-cat 16329  df-cid 16330  df-sect 16407  df-inv 16408  df-inito 16641
This theorem is referenced by:  initoeu1  16661
  Copyright terms: Public domain W3C validator