MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2mpt20 Structured version   Visualization version   Unicode version

Theorem 2mpt20 6882
Description: If the operation value of the operation value of two nested maps-to notation is not empty, all involved arguments belong to the corresponding base classes of the maps-to notations. (Contributed by AV, 21-May-2021.)
Hypotheses
Ref Expression
2mpt20.o  |-  O  =  ( x  e.  A ,  y  e.  B  |->  E )
2mpt20.u  |-  ( ( X  e.  A  /\  Y  e.  B )  ->  ( X O Y )  =  ( s  e.  C ,  t  e.  D  |->  F ) )
Assertion
Ref Expression
2mpt20  |-  ( -.  ( ( X  e.  A  /\  Y  e.  B )  /\  ( S  e.  C  /\  T  e.  D )
)  ->  ( S
( X O Y ) T )  =  (/) )
Distinct variable groups:    x, A, y    x, B, y    C, s, t    D, s, t
Allowed substitution hints:    A( t, s)    B( t, s)    C( x, y)    D( x, y)    S( x, y, t, s)    T( x, y, t, s)    E( x, y, t, s)    F( x, y, t, s)    O( x, y, t, s)    X( x, y, t, s)    Y( x, y, t, s)

Proof of Theorem 2mpt20
StepHypRef Expression
1 ianor 509 . 2  |-  ( -.  ( ( X  e.  A  /\  Y  e.  B )  /\  ( S  e.  C  /\  T  e.  D )
)  <->  ( -.  ( X  e.  A  /\  Y  e.  B )  \/  -.  ( S  e.  C  /\  T  e.  D ) ) )
2 2mpt20.o . . . . . 6  |-  O  =  ( x  e.  A ,  y  e.  B  |->  E )
32mpt2ndm0 6875 . . . . 5  |-  ( -.  ( X  e.  A  /\  Y  e.  B
)  ->  ( X O Y )  =  (/) )
43oveqd 6667 . . . 4  |-  ( -.  ( X  e.  A  /\  Y  e.  B
)  ->  ( S
( X O Y ) T )  =  ( S (/) T ) )
5 0ov 6682 . . . 4  |-  ( S
(/) T )  =  (/)
64, 5syl6eq 2672 . . 3  |-  ( -.  ( X  e.  A  /\  Y  e.  B
)  ->  ( S
( X O Y ) T )  =  (/) )
7 notnotb 304 . . . 4  |-  ( ( X  e.  A  /\  Y  e.  B )  <->  -. 
-.  ( X  e.  A  /\  Y  e.  B ) )
8 2mpt20.u . . . . . . 7  |-  ( ( X  e.  A  /\  Y  e.  B )  ->  ( X O Y )  =  ( s  e.  C ,  t  e.  D  |->  F ) )
98adantr 481 . . . . . 6  |-  ( ( ( X  e.  A  /\  Y  e.  B
)  /\  -.  ( S  e.  C  /\  T  e.  D )
)  ->  ( X O Y )  =  ( s  e.  C , 
t  e.  D  |->  F ) )
109oveqd 6667 . . . . 5  |-  ( ( ( X  e.  A  /\  Y  e.  B
)  /\  -.  ( S  e.  C  /\  T  e.  D )
)  ->  ( S
( X O Y ) T )  =  ( S ( s  e.  C ,  t  e.  D  |->  F ) T ) )
11 eqid 2622 . . . . . . 7  |-  ( s  e.  C ,  t  e.  D  |->  F )  =  ( s  e.  C ,  t  e.  D  |->  F )
1211mpt2ndm0 6875 . . . . . 6  |-  ( -.  ( S  e.  C  /\  T  e.  D
)  ->  ( S
( s  e.  C ,  t  e.  D  |->  F ) T )  =  (/) )
1312adantl 482 . . . . 5  |-  ( ( ( X  e.  A  /\  Y  e.  B
)  /\  -.  ( S  e.  C  /\  T  e.  D )
)  ->  ( S
( s  e.  C ,  t  e.  D  |->  F ) T )  =  (/) )
1410, 13eqtrd 2656 . . . 4  |-  ( ( ( X  e.  A  /\  Y  e.  B
)  /\  -.  ( S  e.  C  /\  T  e.  D )
)  ->  ( S
( X O Y ) T )  =  (/) )
157, 14sylanbr 490 . . 3  |-  ( ( -.  -.  ( X  e.  A  /\  Y  e.  B )  /\  -.  ( S  e.  C  /\  T  e.  D
) )  ->  ( S ( X O Y ) T )  =  (/) )
166, 15jaoi3 1011 . 2  |-  ( ( -.  ( X  e.  A  /\  Y  e.  B )  \/  -.  ( S  e.  C  /\  T  e.  D
) )  ->  ( S ( X O Y ) T )  =  (/) )
171, 16sylbi 207 1  |-  ( -.  ( ( X  e.  A  /\  Y  e.  B )  /\  ( S  e.  C  /\  T  e.  D )
)  ->  ( S
( X O Y ) T )  =  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   (/)c0 3915  (class class class)co 6650    |-> cmpt2 6652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-dm 5124  df-iota 5851  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655
This theorem is referenced by:  wwlksnon0  26812
  Copyright terms: Public domain W3C validator