| Step | Hyp | Ref
| Expression |
| 1 | | usgr2pthspth 26658 |
. . . . . . 7
⊢ ((𝐺 ∈ USGraph ∧
(#‘𝐹) = 2) →
(𝐹(Paths‘𝐺)𝑃 ↔ 𝐹(SPaths‘𝐺)𝑃)) |
| 2 | | usgrupgr 26077 |
. . . . . . . . 9
⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UPGraph
) |
| 3 | 2 | adantr 481 |
. . . . . . . 8
⊢ ((𝐺 ∈ USGraph ∧
(#‘𝐹) = 2) →
𝐺 ∈ UPGraph
) |
| 4 | | isspth 26620 |
. . . . . . . . . . 11
⊢ (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃)) |
| 5 | 4 | a1i 11 |
. . . . . . . . . 10
⊢ (𝐺 ∈ UPGraph → (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃))) |
| 6 | | usgr2pthlem.v |
. . . . . . . . . . . . 13
⊢ 𝑉 = (Vtx‘𝐺) |
| 7 | | usgr2pthlem.i |
. . . . . . . . . . . . 13
⊢ 𝐼 = (iEdg‘𝐺) |
| 8 | 6, 7 | upgrf1istrl 26600 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ UPGraph → (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}))) |
| 9 | 8 | anbi1d 741 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ UPGraph → ((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃) ↔ ((𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun ◡𝑃))) |
| 10 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . 19
⊢
((#‘𝐹) = 2
→ (0..^(#‘𝐹)) =
(0..^2)) |
| 11 | | f1eq2 6097 |
. . . . . . . . . . . . . . . . . . 19
⊢
((0..^(#‘𝐹)) =
(0..^2) → (𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼 ↔ 𝐹:(0..^2)–1-1→dom 𝐼)) |
| 12 | 10, 11 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢
((#‘𝐹) = 2
→ (𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼 ↔ 𝐹:(0..^2)–1-1→dom 𝐼)) |
| 13 | 12 | biimpd 219 |
. . . . . . . . . . . . . . . . 17
⊢
((#‘𝐹) = 2
→ (𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼 → 𝐹:(0..^2)–1-1→dom 𝐼)) |
| 14 | 13 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺 ∈ USGraph ∧
(#‘𝐹) = 2) →
(𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼 → 𝐹:(0..^2)–1-1→dom 𝐼)) |
| 15 | 14 | com12 32 |
. . . . . . . . . . . . . . 15
⊢ (𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼 → ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → 𝐹:(0..^2)–1-1→dom 𝐼)) |
| 16 | 15 | 3ad2ant1 1082 |
. . . . . . . . . . . . . 14
⊢ ((𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) → ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → 𝐹:(0..^2)–1-1→dom 𝐼)) |
| 17 | 16 | ad2antrl 764 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun ◡𝑃)) → ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → 𝐹:(0..^2)–1-1→dom 𝐼)) |
| 18 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((#‘𝐹) = 2
→ (0...(#‘𝐹)) =
(0...2)) |
| 19 | 18 | feq2d 6031 |
. . . . . . . . . . . . . . . . . . 19
⊢
((#‘𝐹) = 2
→ (𝑃:(0...(#‘𝐹))⟶𝑉 ↔ 𝑃:(0...2)⟶𝑉)) |
| 20 | | df-f1 5893 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑃:(0...2)–1-1→𝑉 ↔ (𝑃:(0...2)⟶𝑉 ∧ Fun ◡𝑃)) |
| 21 | 20 | simplbi2 655 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑃:(0...2)⟶𝑉 → (Fun ◡𝑃 → 𝑃:(0...2)–1-1→𝑉)) |
| 22 | 21 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢
((#‘𝐹) = 2
→ (𝑃:(0...2)⟶𝑉 → (Fun ◡𝑃 → 𝑃:(0...2)–1-1→𝑉))) |
| 23 | 19, 22 | sylbid 230 |
. . . . . . . . . . . . . . . . . 18
⊢
((#‘𝐹) = 2
→ (𝑃:(0...(#‘𝐹))⟶𝑉 → (Fun ◡𝑃 → 𝑃:(0...2)–1-1→𝑉))) |
| 24 | 23 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺 ∈ USGraph ∧
(#‘𝐹) = 2) →
(𝑃:(0...(#‘𝐹))⟶𝑉 → (Fun ◡𝑃 → 𝑃:(0...2)–1-1→𝑉))) |
| 25 | 24 | com3l 89 |
. . . . . . . . . . . . . . . 16
⊢ (𝑃:(0...(#‘𝐹))⟶𝑉 → (Fun ◡𝑃 → ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → 𝑃:(0...2)–1-1→𝑉))) |
| 26 | 25 | 3ad2ant2 1083 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) → (Fun ◡𝑃 → ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → 𝑃:(0...2)–1-1→𝑉))) |
| 27 | 26 | imp 445 |
. . . . . . . . . . . . . 14
⊢ (((𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun ◡𝑃) → ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → 𝑃:(0...2)–1-1→𝑉)) |
| 28 | 27 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun ◡𝑃)) → ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → 𝑃:(0...2)–1-1→𝑉)) |
| 29 | 6, 7 | usgr2pthlem 26659 |
. . . . . . . . . . . . . 14
⊢ ((𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) → ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))) |
| 30 | 29 | ad2antrl 764 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun ◡𝑃)) → ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))) |
| 31 | 17, 28, 30 | 3jcad 1243 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun ◡𝑃)) → ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → (𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))) |
| 32 | 31 | ex 450 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ UPGraph → (((𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun ◡𝑃) → ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → (𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))) |
| 33 | 9, 32 | sylbid 230 |
. . . . . . . . . 10
⊢ (𝐺 ∈ UPGraph → ((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃) → ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → (𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))) |
| 34 | 5, 33 | sylbid 230 |
. . . . . . . . 9
⊢ (𝐺 ∈ UPGraph → (𝐹(SPaths‘𝐺)𝑃 → ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → (𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))) |
| 35 | 34 | com23 86 |
. . . . . . . 8
⊢ (𝐺 ∈ UPGraph → ((𝐺 ∈ USGraph ∧
(#‘𝐹) = 2) →
(𝐹(SPaths‘𝐺)𝑃 → (𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))) |
| 36 | 3, 35 | mpcom 38 |
. . . . . . 7
⊢ ((𝐺 ∈ USGraph ∧
(#‘𝐹) = 2) →
(𝐹(SPaths‘𝐺)𝑃 → (𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))) |
| 37 | 1, 36 | sylbid 230 |
. . . . . 6
⊢ ((𝐺 ∈ USGraph ∧
(#‘𝐹) = 2) →
(𝐹(Paths‘𝐺)𝑃 → (𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))) |
| 38 | 37 | ex 450 |
. . . . 5
⊢ (𝐺 ∈ USGraph →
((#‘𝐹) = 2 →
(𝐹(Paths‘𝐺)𝑃 → (𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))) |
| 39 | 38 | com13 88 |
. . . 4
⊢ (𝐹(Paths‘𝐺)𝑃 → ((#‘𝐹) = 2 → (𝐺 ∈ USGraph → (𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))) |
| 40 | 39 | imp 445 |
. . 3
⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ (#‘𝐹) = 2) → (𝐺 ∈ USGraph → (𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))) |
| 41 | 40 | com12 32 |
. 2
⊢ (𝐺 ∈ USGraph → ((𝐹(Paths‘𝐺)𝑃 ∧ (#‘𝐹) = 2) → (𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))) |
| 42 | | 2nn0 11309 |
. . . . . 6
⊢ 2 ∈
ℕ0 |
| 43 | | f1f 6101 |
. . . . . 6
⊢ (𝐹:(0..^2)–1-1→dom 𝐼 → 𝐹:(0..^2)⟶dom 𝐼) |
| 44 | | fnfzo0hash 13234 |
. . . . . 6
⊢ ((2
∈ ℕ0 ∧ 𝐹:(0..^2)⟶dom 𝐼) → (#‘𝐹) = 2) |
| 45 | 42, 43, 44 | sylancr 695 |
. . . . 5
⊢ (𝐹:(0..^2)–1-1→dom 𝐼 → (#‘𝐹) = 2) |
| 46 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . 18
⊢ (2 =
(#‘𝐹) → (0..^2)
= (0..^(#‘𝐹))) |
| 47 | 46 | eqcoms 2630 |
. . . . . . . . . . . . . . . . 17
⊢
((#‘𝐹) = 2
→ (0..^2) = (0..^(#‘𝐹))) |
| 48 | | f1eq2 6097 |
. . . . . . . . . . . . . . . . 17
⊢ ((0..^2)
= (0..^(#‘𝐹)) →
(𝐹:(0..^2)–1-1→dom 𝐼 ↔ 𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼)) |
| 49 | 47, 48 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢
((#‘𝐹) = 2
→ (𝐹:(0..^2)–1-1→dom 𝐼 ↔ 𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼)) |
| 50 | 49 | biimpd 219 |
. . . . . . . . . . . . . . 15
⊢
((#‘𝐹) = 2
→ (𝐹:(0..^2)–1-1→dom 𝐼 → 𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼)) |
| 51 | 50 | imp 445 |
. . . . . . . . . . . . . 14
⊢
(((#‘𝐹) = 2
∧ 𝐹:(0..^2)–1-1→dom 𝐼) → 𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼) |
| 52 | 51 | adantr 481 |
. . . . . . . . . . . . 13
⊢
((((#‘𝐹) = 2
∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) → 𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼) |
| 53 | 52 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢
((((((#‘𝐹) = 2
∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph ) → 𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼) |
| 54 | | f1f 6101 |
. . . . . . . . . . . . . . 15
⊢ (𝑃:(0...2)–1-1→𝑉 → 𝑃:(0...2)⟶𝑉) |
| 55 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . 18
⊢ (2 =
(#‘𝐹) → (0...2)
= (0...(#‘𝐹))) |
| 56 | 55 | eqcoms 2630 |
. . . . . . . . . . . . . . . . 17
⊢
((#‘𝐹) = 2
→ (0...2) = (0...(#‘𝐹))) |
| 57 | 56 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢
(((#‘𝐹) = 2
∧ 𝐹:(0..^2)–1-1→dom 𝐼) → (0...2) = (0...(#‘𝐹))) |
| 58 | 57 | feq2d 6031 |
. . . . . . . . . . . . . . 15
⊢
(((#‘𝐹) = 2
∧ 𝐹:(0..^2)–1-1→dom 𝐼) → (𝑃:(0...2)⟶𝑉 ↔ 𝑃:(0...(#‘𝐹))⟶𝑉)) |
| 59 | 54, 58 | syl5ib 234 |
. . . . . . . . . . . . . 14
⊢
(((#‘𝐹) = 2
∧ 𝐹:(0..^2)–1-1→dom 𝐼) → (𝑃:(0...2)–1-1→𝑉 → 𝑃:(0...(#‘𝐹))⟶𝑉)) |
| 60 | 59 | imp 445 |
. . . . . . . . . . . . 13
⊢
((((#‘𝐹) = 2
∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) → 𝑃:(0...(#‘𝐹))⟶𝑉) |
| 61 | 60 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢
((((((#‘𝐹) = 2
∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph ) → 𝑃:(0...(#‘𝐹))⟶𝑉) |
| 62 | | eqcom 2629 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑃‘0) = 𝑥 ↔ 𝑥 = (𝑃‘0)) |
| 63 | 62 | biimpi 206 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑃‘0) = 𝑥 → 𝑥 = (𝑃‘0)) |
| 64 | 63 | 3ad2ant1 1082 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → 𝑥 = (𝑃‘0)) |
| 65 | | eqcom 2629 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑃‘1) = 𝑦 ↔ 𝑦 = (𝑃‘1)) |
| 66 | 65 | biimpi 206 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑃‘1) = 𝑦 → 𝑦 = (𝑃‘1)) |
| 67 | 66 | 3ad2ant2 1083 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → 𝑦 = (𝑃‘1)) |
| 68 | 64, 67 | preq12d 4276 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → {𝑥, 𝑦} = {(𝑃‘0), (𝑃‘1)}) |
| 69 | 68 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ↔ (𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)})) |
| 70 | 69 | biimpcd 239 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} → (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → (𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)})) |
| 71 | 70 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}) → (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → (𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)})) |
| 72 | 71 | impcom 446 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → (𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)}) |
| 73 | | eqcom 2629 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑃‘2) = 𝑧 ↔ 𝑧 = (𝑃‘2)) |
| 74 | 73 | biimpi 206 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑃‘2) = 𝑧 → 𝑧 = (𝑃‘2)) |
| 75 | 74 | 3ad2ant3 1084 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → 𝑧 = (𝑃‘2)) |
| 76 | 67, 75 | preq12d 4276 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → {𝑦, 𝑧} = {(𝑃‘1), (𝑃‘2)}) |
| 77 | 76 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → ((𝐼‘(𝐹‘1)) = {𝑦, 𝑧} ↔ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) |
| 78 | 77 | biimpcd 239 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐼‘(𝐹‘1)) = {𝑦, 𝑧} → (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) |
| 79 | 78 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}) → (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) |
| 80 | 79 | impcom 446 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) |
| 81 | 72, 80 | jca 554 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) |
| 82 | 81 | rexlimivw 3029 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∃𝑧 ∈
(𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) |
| 83 | 82 | rexlimivw 3029 |
. . . . . . . . . . . . . . . . . 18
⊢
(∃𝑦 ∈
(𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) |
| 84 | 83 | rexlimivw 3029 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑥 ∈
𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) |
| 85 | 84 | a1i13 27 |
. . . . . . . . . . . . . . . 16
⊢
((#‘𝐹) = 2
→ (∃𝑥 ∈
𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → (𝐺 ∈ USGraph → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})))) |
| 86 | | fzo0to2pr 12553 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (0..^2) =
{0, 1} |
| 87 | 10, 86 | syl6eq 2672 |
. . . . . . . . . . . . . . . . . . 19
⊢
((#‘𝐹) = 2
→ (0..^(#‘𝐹)) =
{0, 1}) |
| 88 | 87 | raleqdv 3144 |
. . . . . . . . . . . . . . . . . 18
⊢
((#‘𝐹) = 2
→ (∀𝑖 ∈
(0..^(#‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ↔ ∀𝑖 ∈ {0, 1} (𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))})) |
| 89 | | 2wlklem 26563 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑖 ∈
{0, 1} (𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ↔ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) |
| 90 | 88, 89 | syl6bb 276 |
. . . . . . . . . . . . . . . . 17
⊢
((#‘𝐹) = 2
→ (∀𝑖 ∈
(0..^(#‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ↔ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) |
| 91 | 90 | imbi2d 330 |
. . . . . . . . . . . . . . . 16
⊢
((#‘𝐹) = 2
→ ((𝐺 ∈ USGraph
→ ∀𝑖 ∈
(0..^(#‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ↔ (𝐺 ∈ USGraph → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})))) |
| 92 | 85, 91 | sylibrd 249 |
. . . . . . . . . . . . . . 15
⊢
((#‘𝐹) = 2
→ (∃𝑥 ∈
𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → (𝐺 ∈ USGraph → ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}))) |
| 93 | 92 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢
((((#‘𝐹) = 2
∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) → (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → (𝐺 ∈ USGraph → ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}))) |
| 94 | 93 | imp 445 |
. . . . . . . . . . . . 13
⊢
(((((#‘𝐹) = 2
∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) → (𝐺 ∈ USGraph → ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))})) |
| 95 | 94 | imp 445 |
. . . . . . . . . . . 12
⊢
((((((#‘𝐹) = 2
∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph ) → ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) |
| 96 | 53, 61, 95 | 3jca 1242 |
. . . . . . . . . . 11
⊢
((((((#‘𝐹) = 2
∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph ) → (𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))})) |
| 97 | 20 | simprbi 480 |
. . . . . . . . . . . . 13
⊢ (𝑃:(0...2)–1-1→𝑉 → Fun ◡𝑃) |
| 98 | 97 | adantl 482 |
. . . . . . . . . . . 12
⊢
((((#‘𝐹) = 2
∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) → Fun ◡𝑃) |
| 99 | 98 | ad2antrr 762 |
. . . . . . . . . . 11
⊢
((((((#‘𝐹) = 2
∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph ) → Fun ◡𝑃) |
| 100 | 96, 99 | jca 554 |
. . . . . . . . . 10
⊢
((((((#‘𝐹) = 2
∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph ) → ((𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun ◡𝑃)) |
| 101 | 5, 9 | bitrd 268 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ UPGraph → (𝐹(SPaths‘𝐺)𝑃 ↔ ((𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun ◡𝑃))) |
| 102 | 2, 101 | syl 17 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ USGraph → (𝐹(SPaths‘𝐺)𝑃 ↔ ((𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun ◡𝑃))) |
| 103 | 102 | adantl 482 |
. . . . . . . . . 10
⊢
((((((#‘𝐹) = 2
∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph ) → (𝐹(SPaths‘𝐺)𝑃 ↔ ((𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun ◡𝑃))) |
| 104 | 100, 103 | mpbird 247 |
. . . . . . . . 9
⊢
((((((#‘𝐹) = 2
∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph ) → 𝐹(SPaths‘𝐺)𝑃) |
| 105 | | simpr 477 |
. . . . . . . . . 10
⊢
((((((#‘𝐹) = 2
∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph ) → 𝐺 ∈ USGraph ) |
| 106 | | simp-4l 806 |
. . . . . . . . . 10
⊢
((((((#‘𝐹) = 2
∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph ) → (#‘𝐹) = 2) |
| 107 | 105, 106,
1 | syl2anc 693 |
. . . . . . . . 9
⊢
((((((#‘𝐹) = 2
∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph ) → (𝐹(Paths‘𝐺)𝑃 ↔ 𝐹(SPaths‘𝐺)𝑃)) |
| 108 | 104, 107 | mpbird 247 |
. . . . . . . 8
⊢
((((((#‘𝐹) = 2
∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph ) → 𝐹(Paths‘𝐺)𝑃) |
| 109 | 108, 106 | jca 554 |
. . . . . . 7
⊢
((((((#‘𝐹) = 2
∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph ) → (𝐹(Paths‘𝐺)𝑃 ∧ (#‘𝐹) = 2)) |
| 110 | 109 | ex 450 |
. . . . . 6
⊢
(((((#‘𝐹) = 2
∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) → (𝐺 ∈ USGraph → (𝐹(Paths‘𝐺)𝑃 ∧ (#‘𝐹) = 2))) |
| 111 | 110 | exp41 638 |
. . . . 5
⊢
((#‘𝐹) = 2
→ (𝐹:(0..^2)–1-1→dom 𝐼 → (𝑃:(0...2)–1-1→𝑉 → (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → (𝐺 ∈ USGraph → (𝐹(Paths‘𝐺)𝑃 ∧ (#‘𝐹) = 2)))))) |
| 112 | 45, 111 | mpcom 38 |
. . . 4
⊢ (𝐹:(0..^2)–1-1→dom 𝐼 → (𝑃:(0...2)–1-1→𝑉 → (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → (𝐺 ∈ USGraph → (𝐹(Paths‘𝐺)𝑃 ∧ (#‘𝐹) = 2))))) |
| 113 | 112 | 3imp 1256 |
. . 3
⊢ ((𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) → (𝐺 ∈ USGraph → (𝐹(Paths‘𝐺)𝑃 ∧ (#‘𝐹) = 2))) |
| 114 | 113 | com12 32 |
. 2
⊢ (𝐺 ∈ USGraph → ((𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) → (𝐹(Paths‘𝐺)𝑃 ∧ (#‘𝐹) = 2))) |
| 115 | 41, 114 | impbid 202 |
1
⊢ (𝐺 ∈ USGraph → ((𝐹(Paths‘𝐺)𝑃 ∧ (#‘𝐹) = 2) ↔ (𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))) |