MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqshft2 Structured version   Visualization version   GIF version

Theorem seqshft2 12827
Description: Shifting the index set of a sequence. (Contributed by Mario Carneiro, 27-Feb-2014.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
seqshft2.1 (𝜑𝑁 ∈ (ℤ𝑀))
seqshft2.2 (𝜑𝐾 ∈ ℤ)
seqshft2.3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) = (𝐺‘(𝑘 + 𝐾)))
Assertion
Ref Expression
seqshft2 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑁 + 𝐾)))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝐾   𝑘,𝑀   𝜑,𝑘   𝑘,𝑁
Allowed substitution hint:   + (𝑘)

Proof of Theorem seqshft2
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqshft2.1 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzfz2 12349 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
31, 2syl 17 . 2 (𝜑𝑁 ∈ (𝑀...𝑁))
4 eleq1 2689 . . . . . 6 (𝑥 = 𝑀 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑀 ∈ (𝑀...𝑁)))
5 fveq2 6191 . . . . . . 7 (𝑥 = 𝑀 → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘𝑀))
6 oveq1 6657 . . . . . . . 8 (𝑥 = 𝑀 → (𝑥 + 𝐾) = (𝑀 + 𝐾))
76fveq2d 6195 . . . . . . 7 (𝑥 = 𝑀 → (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑀 + 𝐾)))
85, 7eqeq12d 2637 . . . . . 6 (𝑥 = 𝑀 → ((seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)) ↔ (seq𝑀( + , 𝐹)‘𝑀) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑀 + 𝐾))))
94, 8imbi12d 334 . . . . 5 (𝑥 = 𝑀 → ((𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾))) ↔ (𝑀 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑀) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑀 + 𝐾)))))
109imbi2d 330 . . . 4 (𝑥 = 𝑀 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)))) ↔ (𝜑 → (𝑀 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑀) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑀 + 𝐾))))))
11 eleq1 2689 . . . . . 6 (𝑥 = 𝑛 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑛 ∈ (𝑀...𝑁)))
12 fveq2 6191 . . . . . . 7 (𝑥 = 𝑛 → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘𝑛))
13 oveq1 6657 . . . . . . . 8 (𝑥 = 𝑛 → (𝑥 + 𝐾) = (𝑛 + 𝐾))
1413fveq2d 6195 . . . . . . 7 (𝑥 = 𝑛 → (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)))
1512, 14eqeq12d 2637 . . . . . 6 (𝑥 = 𝑛 → ((seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)) ↔ (seq𝑀( + , 𝐹)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾))))
1611, 15imbi12d 334 . . . . 5 (𝑥 = 𝑛 → ((𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾))) ↔ (𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)))))
1716imbi2d 330 . . . 4 (𝑥 = 𝑛 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)))) ↔ (𝜑 → (𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾))))))
18 eleq1 2689 . . . . . 6 (𝑥 = (𝑛 + 1) → (𝑥 ∈ (𝑀...𝑁) ↔ (𝑛 + 1) ∈ (𝑀...𝑁)))
19 fveq2 6191 . . . . . . 7 (𝑥 = (𝑛 + 1) → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘(𝑛 + 1)))
20 oveq1 6657 . . . . . . . 8 (𝑥 = (𝑛 + 1) → (𝑥 + 𝐾) = ((𝑛 + 1) + 𝐾))
2120fveq2d 6195 . . . . . . 7 (𝑥 = (𝑛 + 1) → (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 1) + 𝐾)))
2219, 21eqeq12d 2637 . . . . . 6 (𝑥 = (𝑛 + 1) → ((seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)) ↔ (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 1) + 𝐾))))
2318, 22imbi12d 334 . . . . 5 (𝑥 = (𝑛 + 1) → ((𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾))) ↔ ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 1) + 𝐾)))))
2423imbi2d 330 . . . 4 (𝑥 = (𝑛 + 1) → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)))) ↔ (𝜑 → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 1) + 𝐾))))))
25 eleq1 2689 . . . . . 6 (𝑥 = 𝑁 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑁 ∈ (𝑀...𝑁)))
26 fveq2 6191 . . . . . . 7 (𝑥 = 𝑁 → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘𝑁))
27 oveq1 6657 . . . . . . . 8 (𝑥 = 𝑁 → (𝑥 + 𝐾) = (𝑁 + 𝐾))
2827fveq2d 6195 . . . . . . 7 (𝑥 = 𝑁 → (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑁 + 𝐾)))
2926, 28eqeq12d 2637 . . . . . 6 (𝑥 = 𝑁 → ((seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)) ↔ (seq𝑀( + , 𝐹)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑁 + 𝐾))))
3025, 29imbi12d 334 . . . . 5 (𝑥 = 𝑁 → ((𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾))) ↔ (𝑁 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑁 + 𝐾)))))
3130imbi2d 330 . . . 4 (𝑥 = 𝑁 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)))) ↔ (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑁 + 𝐾))))))
32 fveq2 6191 . . . . . . . 8 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
33 oveq1 6657 . . . . . . . . 9 (𝑘 = 𝑀 → (𝑘 + 𝐾) = (𝑀 + 𝐾))
3433fveq2d 6195 . . . . . . . 8 (𝑘 = 𝑀 → (𝐺‘(𝑘 + 𝐾)) = (𝐺‘(𝑀 + 𝐾)))
3532, 34eqeq12d 2637 . . . . . . 7 (𝑘 = 𝑀 → ((𝐹𝑘) = (𝐺‘(𝑘 + 𝐾)) ↔ (𝐹𝑀) = (𝐺‘(𝑀 + 𝐾))))
36 seqshft2.3 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) = (𝐺‘(𝑘 + 𝐾)))
3736ralrimiva 2966 . . . . . . 7 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) = (𝐺‘(𝑘 + 𝐾)))
38 eluzfz1 12348 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
391, 38syl 17 . . . . . . 7 (𝜑𝑀 ∈ (𝑀...𝑁))
4035, 37, 39rspcdva 3316 . . . . . 6 (𝜑 → (𝐹𝑀) = (𝐺‘(𝑀 + 𝐾)))
41 eluzel2 11692 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
421, 41syl 17 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
43 seq1 12814 . . . . . . 7 (𝑀 ∈ ℤ → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
4442, 43syl 17 . . . . . 6 (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
45 seqshft2.2 . . . . . . . 8 (𝜑𝐾 ∈ ℤ)
4642, 45zaddcld 11486 . . . . . . 7 (𝜑 → (𝑀 + 𝐾) ∈ ℤ)
47 seq1 12814 . . . . . . 7 ((𝑀 + 𝐾) ∈ ℤ → (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑀 + 𝐾)) = (𝐺‘(𝑀 + 𝐾)))
4846, 47syl 17 . . . . . 6 (𝜑 → (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑀 + 𝐾)) = (𝐺‘(𝑀 + 𝐾)))
4940, 44, 483eqtr4d 2666 . . . . 5 (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑀 + 𝐾)))
5049a1i13 27 . . . 4 (𝑀 ∈ ℤ → (𝜑 → (𝑀 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑀) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑀 + 𝐾)))))
51 peano2fzr 12354 . . . . . . . . . 10 ((𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → 𝑛 ∈ (𝑀...𝑁))
5251adantl 482 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ (𝑀...𝑁))
5352expr 643 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → 𝑛 ∈ (𝑀...𝑁)))
5453imim1d 82 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾))) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)))))
55 oveq1 6657 . . . . . . . . . 10 ((seq𝑀( + , 𝐹)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)) → ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))) = ((seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)) + (𝐹‘(𝑛 + 1))))
56 simprl 794 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ (ℤ𝑀))
57 seqp1 12816 . . . . . . . . . . . 12 (𝑛 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))
5856, 57syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))
5945adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝐾 ∈ ℤ)
60 eluzadd 11716 . . . . . . . . . . . . . 14 ((𝑛 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → (𝑛 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)))
6156, 59, 60syl2anc 693 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝑛 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)))
62 seqp1 12816 . . . . . . . . . . . . 13 ((𝑛 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)) → (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 𝐾) + 1)) = ((seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)) + (𝐺‘((𝑛 + 𝐾) + 1))))
6361, 62syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 𝐾) + 1)) = ((seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)) + (𝐺‘((𝑛 + 𝐾) + 1))))
64 eluzelz 11697 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℤ𝑀) → 𝑛 ∈ ℤ)
6556, 64syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ ℤ)
66 zcn 11382 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
67 zcn 11382 . . . . . . . . . . . . . . 15 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
68 ax-1cn 9994 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
69 add32 10254 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑛 + 1) + 𝐾) = ((𝑛 + 𝐾) + 1))
7068, 69mp3an2 1412 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑛 + 1) + 𝐾) = ((𝑛 + 𝐾) + 1))
7166, 67, 70syl2an 494 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑛 + 1) + 𝐾) = ((𝑛 + 𝐾) + 1))
7265, 59, 71syl2anc 693 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((𝑛 + 1) + 𝐾) = ((𝑛 + 𝐾) + 1))
7372fveq2d 6195 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 1) + 𝐾)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 𝐾) + 1)))
74 fveq2 6191 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
75 oveq1 6657 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝑛 + 1) → (𝑘 + 𝐾) = ((𝑛 + 1) + 𝐾))
7675fveq2d 6195 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑛 + 1) → (𝐺‘(𝑘 + 𝐾)) = (𝐺‘((𝑛 + 1) + 𝐾)))
7774, 76eqeq12d 2637 . . . . . . . . . . . . . . 15 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) = (𝐺‘(𝑘 + 𝐾)) ↔ (𝐹‘(𝑛 + 1)) = (𝐺‘((𝑛 + 1) + 𝐾))))
7837adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) = (𝐺‘(𝑘 + 𝐾)))
79 simprr 796 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝑛 + 1) ∈ (𝑀...𝑁))
8077, 78, 79rspcdva 3316 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐹‘(𝑛 + 1)) = (𝐺‘((𝑛 + 1) + 𝐾)))
8172fveq2d 6195 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐺‘((𝑛 + 1) + 𝐾)) = (𝐺‘((𝑛 + 𝐾) + 1)))
8280, 81eqtrd 2656 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐹‘(𝑛 + 1)) = (𝐺‘((𝑛 + 𝐾) + 1)))
8382oveq2d 6666 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)) + (𝐹‘(𝑛 + 1))) = ((seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)) + (𝐺‘((𝑛 + 𝐾) + 1))))
8463, 73, 833eqtr4d 2666 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 1) + 𝐾)) = ((seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)) + (𝐹‘(𝑛 + 1))))
8558, 84eqeq12d 2637 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 1) + 𝐾)) ↔ ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))) = ((seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)) + (𝐹‘(𝑛 + 1)))))
8655, 85syl5ibr 236 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((seq𝑀( + , 𝐹)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 1) + 𝐾))))
8786expr 643 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → ((seq𝑀( + , 𝐹)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 1) + 𝐾)))))
8887a2d 29 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑀)) → (((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾))) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 1) + 𝐾)))))
8954, 88syld 47 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾))) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 1) + 𝐾)))))
9089expcom 451 . . . . 5 (𝑛 ∈ (ℤ𝑀) → (𝜑 → ((𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾))) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 1) + 𝐾))))))
9190a2d 29 . . . 4 (𝑛 ∈ (ℤ𝑀) → ((𝜑 → (𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)))) → (𝜑 → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 1) + 𝐾))))))
9210, 17, 24, 31, 50, 91uzind4 11746 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑁 + 𝐾)))))
931, 92mpcom 38 . 2 (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑁 + 𝐾))))
943, 93mpd 15 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑁 + 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  cfv 5888  (class class class)co 6650  cc 9934  1c1 9937   + caddc 9939  cz 11377  cuz 11687  ...cfz 12326  seqcseq 12801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802
This theorem is referenced by:  seqf1olem2  12841  seqshft  13825  isercoll2  14399  fprodser  14679  gsumccat  17378  mulgnndir  17569  mulgnndirOLD  17570
  Copyright terms: Public domain W3C validator