MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abeq2d Structured version   Visualization version   GIF version

Theorem abeq2d 2734
Description: Equality of a class variable and a class abstraction (deduction form of abeq2 2732). (Contributed by NM, 16-Nov-1995.)
Hypothesis
Ref Expression
abeq2d.1 (𝜑𝐴 = {𝑥𝜓})
Assertion
Ref Expression
abeq2d (𝜑 → (𝑥𝐴𝜓))

Proof of Theorem abeq2d
StepHypRef Expression
1 abeq2d.1 . . 3 (𝜑𝐴 = {𝑥𝜓})
21eleq2d 2687 . 2 (𝜑 → (𝑥𝐴𝑥 ∈ {𝑥𝜓}))
3 abid 2610 . 2 (𝑥 ∈ {𝑥𝜓} ↔ 𝜓)
42, 3syl6bb 276 1 (𝜑 → (𝑥𝐴𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1483  wcel 1990  {cab 2608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-12 2047  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618
This theorem is referenced by:  abeq2i  2735  fvelimab  6253  nosupbnd2  31862  ispridlc  33869  ac6s6  33980  dib1dim  36454  mapsnend  39391
  Copyright terms: Public domain W3C validator