MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvelimab Structured version   Visualization version   GIF version

Theorem fvelimab 6253
Description: Function value in an image. (Contributed by NM, 20-Jan-2007.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by David Abernethy, 17-Dec-2011.)
Assertion
Ref Expression
fvelimab ((𝐹 Fn 𝐴𝐵𝐴) → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem fvelimab
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elex 3212 . . 3 (𝐶 ∈ (𝐹𝐵) → 𝐶 ∈ V)
21anim2i 593 . 2 (((𝐹 Fn 𝐴𝐵𝐴) ∧ 𝐶 ∈ (𝐹𝐵)) → ((𝐹 Fn 𝐴𝐵𝐴) ∧ 𝐶 ∈ V))
3 fvex 6201 . . . . 5 (𝐹𝑥) ∈ V
4 eleq1 2689 . . . . 5 ((𝐹𝑥) = 𝐶 → ((𝐹𝑥) ∈ V ↔ 𝐶 ∈ V))
53, 4mpbii 223 . . . 4 ((𝐹𝑥) = 𝐶𝐶 ∈ V)
65rexlimivw 3029 . . 3 (∃𝑥𝐵 (𝐹𝑥) = 𝐶𝐶 ∈ V)
76anim2i 593 . 2 (((𝐹 Fn 𝐴𝐵𝐴) ∧ ∃𝑥𝐵 (𝐹𝑥) = 𝐶) → ((𝐹 Fn 𝐴𝐵𝐴) ∧ 𝐶 ∈ V))
8 eleq1 2689 . . . . . 6 (𝑦 = 𝐶 → (𝑦 ∈ (𝐹𝐵) ↔ 𝐶 ∈ (𝐹𝐵)))
9 eqeq2 2633 . . . . . . 7 (𝑦 = 𝐶 → ((𝐹𝑥) = 𝑦 ↔ (𝐹𝑥) = 𝐶))
109rexbidv 3052 . . . . . 6 (𝑦 = 𝐶 → (∃𝑥𝐵 (𝐹𝑥) = 𝑦 ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶))
118, 10bibi12d 335 . . . . 5 (𝑦 = 𝐶 → ((𝑦 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝑦) ↔ (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶)))
1211imbi2d 330 . . . 4 (𝑦 = 𝐶 → (((𝐹 Fn 𝐴𝐵𝐴) → (𝑦 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝑦)) ↔ ((𝐹 Fn 𝐴𝐵𝐴) → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶))))
13 fnfun 5988 . . . . . 6 (𝐹 Fn 𝐴 → Fun 𝐹)
14 fndm 5990 . . . . . . . 8 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
1514sseq2d 3633 . . . . . . 7 (𝐹 Fn 𝐴 → (𝐵 ⊆ dom 𝐹𝐵𝐴))
1615biimpar 502 . . . . . 6 ((𝐹 Fn 𝐴𝐵𝐴) → 𝐵 ⊆ dom 𝐹)
17 dfimafn 6245 . . . . . 6 ((Fun 𝐹𝐵 ⊆ dom 𝐹) → (𝐹𝐵) = {𝑦 ∣ ∃𝑥𝐵 (𝐹𝑥) = 𝑦})
1813, 16, 17syl2an2r 876 . . . . 5 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹𝐵) = {𝑦 ∣ ∃𝑥𝐵 (𝐹𝑥) = 𝑦})
1918abeq2d 2734 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴) → (𝑦 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝑦))
2012, 19vtoclg 3266 . . 3 (𝐶 ∈ V → ((𝐹 Fn 𝐴𝐵𝐴) → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶)))
2120impcom 446 . 2 (((𝐹 Fn 𝐴𝐵𝐴) ∧ 𝐶 ∈ V) → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶))
222, 7, 21pm5.21nd 941 1 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  {cab 2608  wrex 2913  Vcvv 3200  wss 3574  dom cdm 5114  cima 5117  Fun wfun 5882   Fn wfn 5883  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896
This theorem is referenced by:  fvelimabd  6254  ssimaex  6263  rexima  6497  ralima  6498  f1elima  6520  ovelimab  6812  tcrank  8747  ackbij2  9065  fin1a2lem6  9227  iunfo  9361  grothomex  9651  axpre-sup  9990  injresinjlem  12588  lmhmima  19047  txkgen  21455  fmucndlem  22095  mdegldg  23826  ig1peu  23931  efopn  24404  pjimai  29035  fimarab  29445  fimaproj  29900  qtophaus  29903  indf1ofs  30088  eulerpartgbij  30434  eulerpartlemgvv  30438  ballotlemsima  30577  elmthm  31473  nocvxmin  31894  isnacs2  37269  isnacs3  37273  islmodfg  37639  kercvrlsm  37653  isnumbasgrplem2  37674  dfacbasgrp  37678  unima  39346  fourierdlem62  40385
  Copyright terms: Public domain W3C validator