Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapsnend Structured version   Visualization version   GIF version

Theorem mapsnend 39391
Description: Set exponentiation to a singleton exponent is equinumerous to its base. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
mapsnend.a (𝜑𝐴𝑉)
mapsnend.b (𝜑𝐵𝑊)
Assertion
Ref Expression
mapsnend (𝜑 → (𝐴𝑚 {𝐵}) ≈ 𝐴)

Proof of Theorem mapsnend
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovexd 6680 . 2 (𝜑 → (𝐴𝑚 {𝐵}) ∈ V)
2 mapsnend.a . . 3 (𝜑𝐴𝑉)
32elexd 3214 . 2 (𝜑𝐴 ∈ V)
4 fvexd 6203 . . 3 (𝑧 ∈ (𝐴𝑚 {𝐵}) → (𝑧𝐵) ∈ V)
54a1i 11 . 2 (𝜑 → (𝑧 ∈ (𝐴𝑚 {𝐵}) → (𝑧𝐵) ∈ V))
6 snex 4908 . . . 4 {⟨𝐵, 𝑤⟩} ∈ V
76a1i 11 . . 3 (𝑤𝐴 → {⟨𝐵, 𝑤⟩} ∈ V)
87a1i 11 . 2 (𝜑 → (𝑤𝐴 → {⟨𝐵, 𝑤⟩} ∈ V))
9 mapsnend.b . . . . . . 7 (𝜑𝐵𝑊)
102, 9mapsnd 39388 . . . . . 6 (𝜑 → (𝐴𝑚 {𝐵}) = {𝑧 ∣ ∃𝑦𝐴 𝑧 = {⟨𝐵, 𝑦⟩}})
1110abeq2d 2734 . . . . 5 (𝜑 → (𝑧 ∈ (𝐴𝑚 {𝐵}) ↔ ∃𝑦𝐴 𝑧 = {⟨𝐵, 𝑦⟩}))
1211anbi1d 741 . . . 4 (𝜑 → ((𝑧 ∈ (𝐴𝑚 {𝐵}) ∧ 𝑤 = (𝑧𝐵)) ↔ (∃𝑦𝐴 𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵))))
13 r19.41v 3089 . . . . . 6 (∃𝑦𝐴 (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵)) ↔ (∃𝑦𝐴 𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵)))
1413bicomi 214 . . . . 5 ((∃𝑦𝐴 𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵)) ↔ ∃𝑦𝐴 (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵)))
1514a1i 11 . . . 4 (𝜑 → ((∃𝑦𝐴 𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵)) ↔ ∃𝑦𝐴 (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵))))
16 df-rex 2918 . . . . 5 (∃𝑦𝐴 (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵)) ↔ ∃𝑦(𝑦𝐴 ∧ (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵))))
1716a1i 11 . . . 4 (𝜑 → (∃𝑦𝐴 (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵)) ↔ ∃𝑦(𝑦𝐴 ∧ (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵)))))
1812, 15, 173bitrd 294 . . 3 (𝜑 → ((𝑧 ∈ (𝐴𝑚 {𝐵}) ∧ 𝑤 = (𝑧𝐵)) ↔ ∃𝑦(𝑦𝐴 ∧ (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵)))))
19 fveq1 6190 . . . . . . . . . . . 12 (𝑧 = {⟨𝐵, 𝑦⟩} → (𝑧𝐵) = ({⟨𝐵, 𝑦⟩}‘𝐵))
2019adantl 482 . . . . . . . . . . 11 ((𝜑𝑧 = {⟨𝐵, 𝑦⟩}) → (𝑧𝐵) = ({⟨𝐵, 𝑦⟩}‘𝐵))
21 vex 3203 . . . . . . . . . . . . . 14 𝑦 ∈ V
2221a1i 11 . . . . . . . . . . . . 13 (𝜑𝑦 ∈ V)
23 fvsng 6447 . . . . . . . . . . . . 13 ((𝐵𝑊𝑦 ∈ V) → ({⟨𝐵, 𝑦⟩}‘𝐵) = 𝑦)
249, 22, 23syl2anc 693 . . . . . . . . . . . 12 (𝜑 → ({⟨𝐵, 𝑦⟩}‘𝐵) = 𝑦)
2524adantr 481 . . . . . . . . . . 11 ((𝜑𝑧 = {⟨𝐵, 𝑦⟩}) → ({⟨𝐵, 𝑦⟩}‘𝐵) = 𝑦)
2620, 25eqtrd 2656 . . . . . . . . . 10 ((𝜑𝑧 = {⟨𝐵, 𝑦⟩}) → (𝑧𝐵) = 𝑦)
2726eqeq2d 2632 . . . . . . . . 9 ((𝜑𝑧 = {⟨𝐵, 𝑦⟩}) → (𝑤 = (𝑧𝐵) ↔ 𝑤 = 𝑦))
28 equcom 1945 . . . . . . . . . 10 (𝑤 = 𝑦𝑦 = 𝑤)
2928a1i 11 . . . . . . . . 9 ((𝜑𝑧 = {⟨𝐵, 𝑦⟩}) → (𝑤 = 𝑦𝑦 = 𝑤))
3027, 29bitrd 268 . . . . . . . 8 ((𝜑𝑧 = {⟨𝐵, 𝑦⟩}) → (𝑤 = (𝑧𝐵) ↔ 𝑦 = 𝑤))
3130ex 450 . . . . . . 7 (𝜑 → (𝑧 = {⟨𝐵, 𝑦⟩} → (𝑤 = (𝑧𝐵) ↔ 𝑦 = 𝑤)))
3231pm5.32d 671 . . . . . 6 (𝜑 → ((𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵)) ↔ (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑦 = 𝑤)))
3332anbi2d 740 . . . . 5 (𝜑 → ((𝑦𝐴 ∧ (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵))) ↔ (𝑦𝐴 ∧ (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑦 = 𝑤))))
34 anass 681 . . . . . 6 (((𝑦𝐴𝑧 = {⟨𝐵, 𝑦⟩}) ∧ 𝑦 = 𝑤) ↔ (𝑦𝐴 ∧ (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑦 = 𝑤)))
3534a1i 11 . . . . 5 (𝜑 → (((𝑦𝐴𝑧 = {⟨𝐵, 𝑦⟩}) ∧ 𝑦 = 𝑤) ↔ (𝑦𝐴 ∧ (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑦 = 𝑤))))
36 ancom 466 . . . . . 6 (((𝑦𝐴𝑧 = {⟨𝐵, 𝑦⟩}) ∧ 𝑦 = 𝑤) ↔ (𝑦 = 𝑤 ∧ (𝑦𝐴𝑧 = {⟨𝐵, 𝑦⟩})))
3736a1i 11 . . . . 5 (𝜑 → (((𝑦𝐴𝑧 = {⟨𝐵, 𝑦⟩}) ∧ 𝑦 = 𝑤) ↔ (𝑦 = 𝑤 ∧ (𝑦𝐴𝑧 = {⟨𝐵, 𝑦⟩}))))
3833, 35, 373bitr2d 296 . . . 4 (𝜑 → ((𝑦𝐴 ∧ (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵))) ↔ (𝑦 = 𝑤 ∧ (𝑦𝐴𝑧 = {⟨𝐵, 𝑦⟩}))))
3938exbidv 1850 . . 3 (𝜑 → (∃𝑦(𝑦𝐴 ∧ (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵))) ↔ ∃𝑦(𝑦 = 𝑤 ∧ (𝑦𝐴𝑧 = {⟨𝐵, 𝑦⟩}))))
40 vex 3203 . . . . 5 𝑤 ∈ V
41 eleq1 2689 . . . . . 6 (𝑦 = 𝑤 → (𝑦𝐴𝑤𝐴))
42 opeq2 4403 . . . . . . . 8 (𝑦 = 𝑤 → ⟨𝐵, 𝑦⟩ = ⟨𝐵, 𝑤⟩)
4342sneqd 4189 . . . . . . 7 (𝑦 = 𝑤 → {⟨𝐵, 𝑦⟩} = {⟨𝐵, 𝑤⟩})
4443eqeq2d 2632 . . . . . 6 (𝑦 = 𝑤 → (𝑧 = {⟨𝐵, 𝑦⟩} ↔ 𝑧 = {⟨𝐵, 𝑤⟩}))
4541, 44anbi12d 747 . . . . 5 (𝑦 = 𝑤 → ((𝑦𝐴𝑧 = {⟨𝐵, 𝑦⟩}) ↔ (𝑤𝐴𝑧 = {⟨𝐵, 𝑤⟩})))
4640, 45ceqsexv 3242 . . . 4 (∃𝑦(𝑦 = 𝑤 ∧ (𝑦𝐴𝑧 = {⟨𝐵, 𝑦⟩})) ↔ (𝑤𝐴𝑧 = {⟨𝐵, 𝑤⟩}))
4746a1i 11 . . 3 (𝜑 → (∃𝑦(𝑦 = 𝑤 ∧ (𝑦𝐴𝑧 = {⟨𝐵, 𝑦⟩})) ↔ (𝑤𝐴𝑧 = {⟨𝐵, 𝑤⟩})))
4818, 39, 473bitrd 294 . 2 (𝜑 → ((𝑧 ∈ (𝐴𝑚 {𝐵}) ∧ 𝑤 = (𝑧𝐵)) ↔ (𝑤𝐴𝑧 = {⟨𝐵, 𝑤⟩})))
491, 3, 5, 8, 48en2d 7991 1 (𝜑 → (𝐴𝑚 {𝐵}) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wex 1704  wcel 1990  wrex 2913  Vcvv 3200  {csn 4177  cop 4183   class class class wbr 4653  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  cen 7952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-en 7956
This theorem is referenced by:  mpct  39393
  Copyright terms: Public domain W3C validator