Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dib1dim Structured version   Visualization version   GIF version

Theorem dib1dim 36454
Description: Two expressions for the 1-dimensional subspaces of vector space H. (Contributed by NM, 24-Feb-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
dib1dim.b 𝐵 = (Base‘𝐾)
dib1dim.h 𝐻 = (LHyp‘𝐾)
dib1dim.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dib1dim.r 𝑅 = ((trL‘𝐾)‘𝑊)
dib1dim.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dib1dim.o 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
dib1dim.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dib1dim (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐼‘(𝑅𝐹)) = {𝑔 ∈ (𝑇 × 𝐸) ∣ ∃𝑠𝐸 𝑔 = ⟨(𝑠𝐹), 𝑂⟩})
Distinct variable groups:   𝐵,   𝑔,𝑠,𝐸   𝑔,𝐹,𝑠   𝐻,𝑠   ,𝑠,𝐾   𝑔,𝑂,𝑠   𝑅,𝑠   𝑔,,𝑇,𝑠   ,𝑊,𝑠
Allowed substitution hints:   𝐵(𝑔,𝑠)   𝑅(𝑔,)   𝐸()   𝐹()   𝐻(𝑔,)   𝐼(𝑔,,𝑠)   𝐾(𝑔)   𝑂()   𝑊(𝑔)

Proof of Theorem dib1dim
Dummy variables 𝑓 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 dib1dim.b . . . . 5 𝐵 = (Base‘𝐾)
3 dib1dim.h . . . . 5 𝐻 = (LHyp‘𝐾)
4 dib1dim.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
5 dib1dim.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
62, 3, 4, 5trlcl 35451 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) ∈ 𝐵)
7 eqid 2622 . . . . 5 (le‘𝐾) = (le‘𝐾)
87, 3, 4, 5trlle 35471 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹)(le‘𝐾)𝑊)
9 dib1dim.o . . . . 5 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
10 eqid 2622 . . . . 5 ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊)
11 dib1dim.i . . . . 5 𝐼 = ((DIsoB‘𝐾)‘𝑊)
122, 7, 3, 4, 9, 10, 11dibval2 36433 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐹) ∈ 𝐵 ∧ (𝑅𝐹)(le‘𝐾)𝑊)) → (𝐼‘(𝑅𝐹)) = ((((DIsoA‘𝐾)‘𝑊)‘(𝑅𝐹)) × {𝑂}))
131, 6, 8, 12syl12anc 1324 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐼‘(𝑅𝐹)) = ((((DIsoA‘𝐾)‘𝑊)‘(𝑅𝐹)) × {𝑂}))
14 relxp 5227 . . . 4 Rel ((((DIsoA‘𝐾)‘𝑊)‘(𝑅𝐹)) × {𝑂})
15 opelxp 5146 . . . . 5 (⟨𝑓, 𝑡⟩ ∈ ((((DIsoA‘𝐾)‘𝑊)‘(𝑅𝐹)) × {𝑂}) ↔ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝑅𝐹)) ∧ 𝑡 ∈ {𝑂}))
16 dib1dim.e . . . . . . . . 9 𝐸 = ((TEndo‘𝐾)‘𝑊)
173, 4, 5, 16, 10dia1dim 36350 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (((DIsoA‘𝐾)‘𝑊)‘(𝑅𝐹)) = {𝑓 ∣ ∃𝑠𝐸 𝑓 = (𝑠𝐹)})
1817abeq2d 2734 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝑅𝐹)) ↔ ∃𝑠𝐸 𝑓 = (𝑠𝐹)))
1918anbi1d 741 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝑅𝐹)) ∧ 𝑡 ∈ {𝑂}) ↔ (∃𝑠𝐸 𝑓 = (𝑠𝐹) ∧ 𝑡 ∈ {𝑂})))
203, 4, 16tendocl 36055 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝐹𝑇) → (𝑠𝐹) ∈ 𝑇)
21203expa 1265 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) ∧ 𝐹𝑇) → (𝑠𝐹) ∈ 𝑇)
2221an32s 846 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑠𝐸) → (𝑠𝐹) ∈ 𝑇)
232, 3, 4, 16, 9tendo0cl 36078 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂𝐸)
2423ad2antrr 762 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑠𝐸) → 𝑂𝐸)
2522, 24jca 554 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑠𝐸) → ((𝑠𝐹) ∈ 𝑇𝑂𝐸))
26 eleq1 2689 . . . . . . . . . . 11 (𝑓 = (𝑠𝐹) → (𝑓𝑇 ↔ (𝑠𝐹) ∈ 𝑇))
27 eleq1 2689 . . . . . . . . . . 11 (𝑡 = 𝑂 → (𝑡𝐸𝑂𝐸))
2826, 27bi2anan9 917 . . . . . . . . . 10 ((𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂) → ((𝑓𝑇𝑡𝐸) ↔ ((𝑠𝐹) ∈ 𝑇𝑂𝐸)))
2925, 28syl5ibrcom 237 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑠𝐸) → ((𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂) → (𝑓𝑇𝑡𝐸)))
3029rexlimdva 3031 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂) → (𝑓𝑇𝑡𝐸)))
3130pm4.71rd 667 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂) ↔ ((𝑓𝑇𝑡𝐸) ∧ ∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂))))
32 velsn 4193 . . . . . . . . 9 (𝑡 ∈ {𝑂} ↔ 𝑡 = 𝑂)
3332anbi2i 730 . . . . . . . 8 ((∃𝑠𝐸 𝑓 = (𝑠𝐹) ∧ 𝑡 ∈ {𝑂}) ↔ (∃𝑠𝐸 𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂))
34 r19.41v 3089 . . . . . . . 8 (∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂) ↔ (∃𝑠𝐸 𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂))
3533, 34bitr4i 267 . . . . . . 7 ((∃𝑠𝐸 𝑓 = (𝑠𝐹) ∧ 𝑡 ∈ {𝑂}) ↔ ∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂))
36 df-3an 1039 . . . . . . 7 ((𝑓𝑇𝑡𝐸 ∧ ∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂)) ↔ ((𝑓𝑇𝑡𝐸) ∧ ∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂)))
3731, 35, 363bitr4g 303 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((∃𝑠𝐸 𝑓 = (𝑠𝐹) ∧ 𝑡 ∈ {𝑂}) ↔ (𝑓𝑇𝑡𝐸 ∧ ∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂))))
3819, 37bitrd 268 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝑅𝐹)) ∧ 𝑡 ∈ {𝑂}) ↔ (𝑓𝑇𝑡𝐸 ∧ ∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂))))
3915, 38syl5bb 272 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (⟨𝑓, 𝑡⟩ ∈ ((((DIsoA‘𝐾)‘𝑊)‘(𝑅𝐹)) × {𝑂}) ↔ (𝑓𝑇𝑡𝐸 ∧ ∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂))))
4014, 39opabbi2dv 5271 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((((DIsoA‘𝐾)‘𝑊)‘(𝑅𝐹)) × {𝑂}) = {⟨𝑓, 𝑡⟩ ∣ (𝑓𝑇𝑡𝐸 ∧ ∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂))})
4113, 40eqtrd 2656 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐼‘(𝑅𝐹)) = {⟨𝑓, 𝑡⟩ ∣ (𝑓𝑇𝑡𝐸 ∧ ∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂))})
42 eqeq1 2626 . . . . 5 (𝑔 = ⟨𝑓, 𝑡⟩ → (𝑔 = ⟨(𝑠𝐹), 𝑂⟩ ↔ ⟨𝑓, 𝑡⟩ = ⟨(𝑠𝐹), 𝑂⟩))
43 vex 3203 . . . . . 6 𝑓 ∈ V
44 vex 3203 . . . . . 6 𝑡 ∈ V
4543, 44opth 4945 . . . . 5 (⟨𝑓, 𝑡⟩ = ⟨(𝑠𝐹), 𝑂⟩ ↔ (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂))
4642, 45syl6bb 276 . . . 4 (𝑔 = ⟨𝑓, 𝑡⟩ → (𝑔 = ⟨(𝑠𝐹), 𝑂⟩ ↔ (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂)))
4746rexbidv 3052 . . 3 (𝑔 = ⟨𝑓, 𝑡⟩ → (∃𝑠𝐸 𝑔 = ⟨(𝑠𝐹), 𝑂⟩ ↔ ∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂)))
4847rabxp 5154 . 2 {𝑔 ∈ (𝑇 × 𝐸) ∣ ∃𝑠𝐸 𝑔 = ⟨(𝑠𝐹), 𝑂⟩} = {⟨𝑓, 𝑡⟩ ∣ (𝑓𝑇𝑡𝐸 ∧ ∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂))}
4941, 48syl6eqr 2674 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐼‘(𝑅𝐹)) = {𝑔 ∈ (𝑇 × 𝐸) ∣ ∃𝑠𝐸 𝑔 = ⟨(𝑠𝐹), 𝑂⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wrex 2913  {crab 2916  {csn 4177  cop 4183   class class class wbr 4653  {copab 4712  cmpt 4729   I cid 5023   × cxp 5112  cres 5116  cfv 5888  Basecbs 15857  lecple 15948  HLchlt 34637  LHypclh 35270  LTrncltrn 35387  trLctrl 35445  TEndoctendo 36040  DIsoAcdia 36317  DIsoBcdib 36427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-undef 7399  df-map 7859  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786  df-lines 34787  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446  df-tendo 36043  df-disoa 36318  df-dib 36428
This theorem is referenced by:  dib1dim2  36457
  Copyright terms: Public domain W3C validator