Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nosupbnd2 Structured version   Visualization version   GIF version

Theorem nosupbnd2 31862
Description: Bounding law from above for the surreal supremum. Proposition 4.3 of [Lipparini] p. 6. (Contributed by Scott Fenton, 6-Dec-2021.)
Hypothesis
Ref Expression
nosupbnd2.1 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
nosupbnd2 ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) → (∀𝑎𝐴 𝑎 <s 𝑍 ↔ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆))
Distinct variable groups:   𝐴,𝑎,𝑔,𝑢,𝑣,𝑥,𝑦   𝑆,𝑎,𝑔   𝑣,𝑢,𝑥,𝑦   𝑍,𝑎,𝑔,𝑥
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑣,𝑢)   𝑍(𝑦,𝑣,𝑢)

Proof of Theorem nosupbnd2
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1843 . . . . . 6 𝑥((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)
2 nfcv 2764 . . . . . . . . 9 𝑥𝑍
3 nosupbnd2.1 . . . . . . . . . . 11 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
4 nfre1 3005 . . . . . . . . . . . 12 𝑥𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦
5 nfriota1 6618 . . . . . . . . . . . . 13 𝑥(𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
65nfdm 5367 . . . . . . . . . . . . . . 15 𝑥dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
7 nfcv 2764 . . . . . . . . . . . . . . 15 𝑥2𝑜
86, 7nfop 4418 . . . . . . . . . . . . . 14 𝑥⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜
98nfsn 4242 . . . . . . . . . . . . 13 𝑥{⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}
105, 9nfun 3769 . . . . . . . . . . . 12 𝑥((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩})
11 nfcv 2764 . . . . . . . . . . . . 13 𝑥{𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}
12 nfiota1 5853 . . . . . . . . . . . . 13 𝑥(℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))
1311, 12nfmpt 4746 . . . . . . . . . . . 12 𝑥(𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))
144, 10, 13nfif 4115 . . . . . . . . . . 11 𝑥if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
153, 14nfcxfr 2762 . . . . . . . . . 10 𝑥𝑆
1615nfdm 5367 . . . . . . . . 9 𝑥dom 𝑆
172, 16nfres 5398 . . . . . . . 8 𝑥(𝑍 ↾ dom 𝑆)
18 nfcv 2764 . . . . . . . 8 𝑥 <s
1917, 18, 15nfbr 4699 . . . . . . 7 𝑥(𝑍 ↾ dom 𝑆) <s 𝑆
2019nfn 1784 . . . . . 6 𝑥 ¬ (𝑍 ↾ dom 𝑆) <s 𝑆
211, 20nfim 1825 . . . . 5 𝑥(((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) → ¬ (𝑍 ↾ dom 𝑆) <s 𝑆)
22 simpl 473 . . . . . . . . 9 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → (𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦))
23 rspe 3003 . . . . . . . . . . . 12 ((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
2423adantr 481 . . . . . . . . . . 11 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
25 nomaxmo 31847 . . . . . . . . . . . . 13 (𝐴 No → ∃*𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
26253ad2ant1 1082 . . . . . . . . . . . 12 ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) → ∃*𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
2726ad2antrl 764 . . . . . . . . . . 11 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → ∃*𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
28 reu5 3159 . . . . . . . . . . 11 (∃!𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ↔ (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ∃*𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
2924, 27, 28sylanbrc 698 . . . . . . . . . 10 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → ∃!𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
30 riota1 6629 . . . . . . . . . 10 (∃!𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → ((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ↔ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥))
3129, 30syl 17 . . . . . . . . 9 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → ((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ↔ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥))
3222, 31mpbid 222 . . . . . . . 8 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥)
33 nosupbnd2lem1 31861 . . . . . . . . . 10 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) → ¬ (𝑍 ↾ suc dom 𝑥) <s (𝑥 ∪ {⟨dom 𝑥, 2𝑜⟩}))
34333expb 1266 . . . . . . . . 9 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → ¬ (𝑍 ↾ suc dom 𝑥) <s (𝑥 ∪ {⟨dom 𝑥, 2𝑜⟩}))
35 dmeq 5324 . . . . . . . . . . . . 13 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = dom 𝑥)
36 suceq 5790 . . . . . . . . . . . . 13 (dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = dom 𝑥 → suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = suc dom 𝑥)
3735, 36syl 17 . . . . . . . . . . . 12 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = suc dom 𝑥)
3837reseq2d 5396 . . . . . . . . . . 11 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → (𝑍 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) = (𝑍 ↾ suc dom 𝑥))
39 id 22 . . . . . . . . . . . 12 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥)
4035opeq1d 4408 . . . . . . . . . . . . 13 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → ⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩ = ⟨dom 𝑥, 2𝑜⟩)
4140sneqd 4189 . . . . . . . . . . . 12 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩} = {⟨dom 𝑥, 2𝑜⟩})
4239, 41uneq12d 3768 . . . . . . . . . . 11 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}) = (𝑥 ∪ {⟨dom 𝑥, 2𝑜⟩}))
4338, 42breq12d 4666 . . . . . . . . . 10 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → ((𝑍 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}) ↔ (𝑍 ↾ suc dom 𝑥) <s (𝑥 ∪ {⟨dom 𝑥, 2𝑜⟩})))
4443notbid 308 . . . . . . . . 9 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → (¬ (𝑍 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}) ↔ ¬ (𝑍 ↾ suc dom 𝑥) <s (𝑥 ∪ {⟨dom 𝑥, 2𝑜⟩})))
4534, 44syl5ibrcom 237 . . . . . . . 8 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → ¬ (𝑍 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩})))
4632, 45mpd 15 . . . . . . 7 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → ¬ (𝑍 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}))
47 iftrue 4092 . . . . . . . . . . . . . 14 (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) = ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}))
483, 47syl5eq 2668 . . . . . . . . . . . . 13 (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦𝑆 = ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}))
4923, 48syl 17 . . . . . . . . . . . 12 ((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) → 𝑆 = ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}))
5049dmeqd 5326 . . . . . . . . . . 11 ((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) → dom 𝑆 = dom ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}))
51 2on 7568 . . . . . . . . . . . . . . 15 2𝑜 ∈ On
5251elexi 3213 . . . . . . . . . . . . . 14 2𝑜 ∈ V
5352dmsnop 5609 . . . . . . . . . . . . 13 dom {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩} = {dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)}
5453uneq2i 3764 . . . . . . . . . . . 12 (dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ dom {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}) = (dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)})
55 dmun 5331 . . . . . . . . . . . 12 dom ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}) = (dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ dom {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩})
56 df-suc 5729 . . . . . . . . . . . 12 suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = (dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)})
5754, 55, 563eqtr4i 2654 . . . . . . . . . . 11 dom ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}) = suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
5850, 57syl6eq 2672 . . . . . . . . . 10 ((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) → dom 𝑆 = suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
5958reseq2d 5396 . . . . . . . . 9 ((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) → (𝑍 ↾ dom 𝑆) = (𝑍 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)))
6059adantr 481 . . . . . . . 8 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → (𝑍 ↾ dom 𝑆) = (𝑍 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)))
6149adantr 481 . . . . . . . 8 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → 𝑆 = ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}))
6260, 61breq12d 4666 . . . . . . 7 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → ((𝑍 ↾ dom 𝑆) <s 𝑆 ↔ (𝑍 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩})))
6346, 62mtbird 315 . . . . . 6 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → ¬ (𝑍 ↾ dom 𝑆) <s 𝑆)
6463exp31 630 . . . . 5 (𝑥𝐴 → (∀𝑦𝐴 ¬ 𝑥 <s 𝑦 → (((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) → ¬ (𝑍 ↾ dom 𝑆) <s 𝑆)))
6521, 64rexlimi 3024 . . . 4 (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → (((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) → ¬ (𝑍 ↾ dom 𝑆) <s 𝑆))
6665imp 445 . . 3 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → ¬ (𝑍 ↾ dom 𝑆) <s 𝑆)
673nosupno 31849 . . . . . . . 8 ((𝐴 No 𝐴 ∈ V) → 𝑆 No )
68673adant3 1081 . . . . . . 7 ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) → 𝑆 No )
6968ad2antrl 764 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → 𝑆 No )
70 nodmon 31803 . . . . . . 7 (𝑆 No → dom 𝑆 ∈ On)
7169, 70syl 17 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → dom 𝑆 ∈ On)
72 noreson 31813 . . . . . 6 ((𝑆 No ∧ dom 𝑆 ∈ On) → (𝑆 ↾ dom 𝑆) ∈ No )
7369, 71, 72syl2anc 693 . . . . 5 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → (𝑆 ↾ dom 𝑆) ∈ No )
74 simprl3 1108 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → 𝑍 No )
75 noreson 31813 . . . . . 6 ((𝑍 No ∧ dom 𝑆 ∈ On) → (𝑍 ↾ dom 𝑆) ∈ No )
7674, 71, 75syl2anc 693 . . . . 5 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → (𝑍 ↾ dom 𝑆) ∈ No )
77 dmres 5419 . . . . . . 7 dom (𝑆 ↾ dom 𝑆) = (dom 𝑆 ∩ dom 𝑆)
78 inss2 3834 . . . . . . 7 (dom 𝑆 ∩ dom 𝑆) ⊆ dom 𝑆
7977, 78eqsstri 3635 . . . . . 6 dom (𝑆 ↾ dom 𝑆) ⊆ dom 𝑆
8079a1i 11 . . . . 5 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → dom (𝑆 ↾ dom 𝑆) ⊆ dom 𝑆)
81 dmres 5419 . . . . . . 7 dom (𝑍 ↾ dom 𝑆) = (dom 𝑆 ∩ dom 𝑍)
82 inss1 3833 . . . . . . 7 (dom 𝑆 ∩ dom 𝑍) ⊆ dom 𝑆
8381, 82eqsstri 3635 . . . . . 6 dom (𝑍 ↾ dom 𝑆) ⊆ dom 𝑆
8483a1i 11 . . . . 5 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → dom (𝑍 ↾ dom 𝑆) ⊆ dom 𝑆)
853nosupdm 31850 . . . . . . . . . . 11 (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = {𝑔 ∣ ∃𝑝𝐴 (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔)))})
8685abeq2d 2734 . . . . . . . . . 10 (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → (𝑔 ∈ dom 𝑆 ↔ ∃𝑝𝐴 (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔)))))
8786adantr 481 . . . . . . . . 9 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → (𝑔 ∈ dom 𝑆 ↔ ∃𝑝𝐴 (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔)))))
88 simprl 794 . . . . . . . . . . . . . 14 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝑝𝐴)
89 simplrr 801 . . . . . . . . . . . . . 14 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ∀𝑎𝐴 𝑎 <s 𝑍)
90 breq1 4656 . . . . . . . . . . . . . . 15 (𝑎 = 𝑝 → (𝑎 <s 𝑍𝑝 <s 𝑍))
9190rspcv 3305 . . . . . . . . . . . . . 14 (𝑝𝐴 → (∀𝑎𝐴 𝑎 <s 𝑍𝑝 <s 𝑍))
9288, 89, 91sylc 65 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝑝 <s 𝑍)
93 simprl1 1106 . . . . . . . . . . . . . . . 16 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → 𝐴 No )
9493adantr 481 . . . . . . . . . . . . . . 15 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝐴 No )
9594, 88sseldd 3604 . . . . . . . . . . . . . 14 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝑝 No )
9674adantr 481 . . . . . . . . . . . . . 14 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝑍 No )
97 sltso 31827 . . . . . . . . . . . . . . 15 <s Or No
98 soasym 31657 . . . . . . . . . . . . . . 15 (( <s Or No ∧ (𝑝 No 𝑍 No )) → (𝑝 <s 𝑍 → ¬ 𝑍 <s 𝑝))
9997, 98mpan 706 . . . . . . . . . . . . . 14 ((𝑝 No 𝑍 No ) → (𝑝 <s 𝑍 → ¬ 𝑍 <s 𝑝))
10095, 96, 99syl2anc 693 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → (𝑝 <s 𝑍 → ¬ 𝑍 <s 𝑝))
10192, 100mpd 15 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ¬ 𝑍 <s 𝑝)
102 nodmon 31803 . . . . . . . . . . . . . . . 16 (𝑝 No → dom 𝑝 ∈ On)
10395, 102syl 17 . . . . . . . . . . . . . . 15 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → dom 𝑝 ∈ On)
104 simprrl 804 . . . . . . . . . . . . . . 15 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝑔 ∈ dom 𝑝)
105 onelon 5748 . . . . . . . . . . . . . . 15 ((dom 𝑝 ∈ On ∧ 𝑔 ∈ dom 𝑝) → 𝑔 ∈ On)
106103, 104, 105syl2anc 693 . . . . . . . . . . . . . 14 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → 𝑔 ∈ On)
107 sucelon 7017 . . . . . . . . . . . . . 14 (𝑔 ∈ On ↔ suc 𝑔 ∈ On)
108106, 107sylib 208 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → suc 𝑔 ∈ On)
109 sltres 31815 . . . . . . . . . . . . 13 ((𝑍 No 𝑝 No ∧ suc 𝑔 ∈ On) → ((𝑍 ↾ suc 𝑔) <s (𝑝 ↾ suc 𝑔) → 𝑍 <s 𝑝))
11096, 95, 108, 109syl3anc 1326 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ((𝑍 ↾ suc 𝑔) <s (𝑝 ↾ suc 𝑔) → 𝑍 <s 𝑝))
111101, 110mtod 189 . . . . . . . . . . 11 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ¬ (𝑍 ↾ suc 𝑔) <s (𝑝 ↾ suc 𝑔))
112 simpll 790 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
113 simprl2 1107 . . . . . . . . . . . . . . 15 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → 𝐴 ∈ V)
11493, 113jca 554 . . . . . . . . . . . . . 14 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → (𝐴 No 𝐴 ∈ V))
115114adantr 481 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → (𝐴 No 𝐴 ∈ V))
116 simprrr 805 . . . . . . . . . . . . . 14 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔)))
117 breq1 4656 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑞 → (𝑣 <s 𝑝𝑞 <s 𝑝))
118117notbid 308 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑞 → (¬ 𝑣 <s 𝑝 ↔ ¬ 𝑞 <s 𝑝))
119 reseq1 5390 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑞 → (𝑣 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))
120119eqeq2d 2632 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑞 → ((𝑝 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔) ↔ (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔)))
121118, 120imbi12d 334 . . . . . . . . . . . . . . 15 (𝑣 = 𝑞 → ((¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ↔ (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))
122121cbvralv 3171 . . . . . . . . . . . . . 14 (∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ↔ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔)))
123116, 122sylibr 224 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))
1243nosupres 31853 . . . . . . . . . . . . 13 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑝𝐴𝑔 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))) → (𝑆 ↾ suc 𝑔) = (𝑝 ↾ suc 𝑔))
125112, 115, 88, 104, 123, 124syl113anc 1338 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → (𝑆 ↾ suc 𝑔) = (𝑝 ↾ suc 𝑔))
126125breq2d 4665 . . . . . . . . . . 11 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ((𝑍 ↾ suc 𝑔) <s (𝑆 ↾ suc 𝑔) ↔ (𝑍 ↾ suc 𝑔) <s (𝑝 ↾ suc 𝑔)))
127111, 126mtbird 315 . . . . . . . . . 10 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ (𝑝𝐴 ∧ (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))))) → ¬ (𝑍 ↾ suc 𝑔) <s (𝑆 ↾ suc 𝑔))
128127rexlimdvaa 3032 . . . . . . . . 9 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → (∃𝑝𝐴 (𝑔 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑔) = (𝑞 ↾ suc 𝑔))) → ¬ (𝑍 ↾ suc 𝑔) <s (𝑆 ↾ suc 𝑔)))
12987, 128sylbid 230 . . . . . . . 8 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → (𝑔 ∈ dom 𝑆 → ¬ (𝑍 ↾ suc 𝑔) <s (𝑆 ↾ suc 𝑔)))
130129imp 445 . . . . . . 7 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ 𝑔 ∈ dom 𝑆) → ¬ (𝑍 ↾ suc 𝑔) <s (𝑆 ↾ suc 𝑔))
13169adantr 481 . . . . . . . . . . 11 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ 𝑔 ∈ dom 𝑆) → 𝑆 No )
132 nodmord 31806 . . . . . . . . . . 11 (𝑆 No → Ord dom 𝑆)
133131, 132syl 17 . . . . . . . . . 10 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ 𝑔 ∈ dom 𝑆) → Ord dom 𝑆)
134 simpr 477 . . . . . . . . . 10 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ 𝑔 ∈ dom 𝑆) → 𝑔 ∈ dom 𝑆)
135 ordsucss 7018 . . . . . . . . . 10 (Ord dom 𝑆 → (𝑔 ∈ dom 𝑆 → suc 𝑔 ⊆ dom 𝑆))
136133, 134, 135sylc 65 . . . . . . . . 9 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ 𝑔 ∈ dom 𝑆) → suc 𝑔 ⊆ dom 𝑆)
137136resabs1d 5428 . . . . . . . 8 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ 𝑔 ∈ dom 𝑆) → ((𝑍 ↾ dom 𝑆) ↾ suc 𝑔) = (𝑍 ↾ suc 𝑔))
138136resabs1d 5428 . . . . . . . 8 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ 𝑔 ∈ dom 𝑆) → ((𝑆 ↾ dom 𝑆) ↾ suc 𝑔) = (𝑆 ↾ suc 𝑔))
139137, 138breq12d 4666 . . . . . . 7 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ 𝑔 ∈ dom 𝑆) → (((𝑍 ↾ dom 𝑆) ↾ suc 𝑔) <s ((𝑆 ↾ dom 𝑆) ↾ suc 𝑔) ↔ (𝑍 ↾ suc 𝑔) <s (𝑆 ↾ suc 𝑔)))
140130, 139mtbird 315 . . . . . 6 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) ∧ 𝑔 ∈ dom 𝑆) → ¬ ((𝑍 ↾ dom 𝑆) ↾ suc 𝑔) <s ((𝑆 ↾ dom 𝑆) ↾ suc 𝑔))
141140ralrimiva 2966 . . . . 5 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → ∀𝑔 ∈ dom 𝑆 ¬ ((𝑍 ↾ dom 𝑆) ↾ suc 𝑔) <s ((𝑆 ↾ dom 𝑆) ↾ suc 𝑔))
142 noresle 31846 . . . . 5 ((((𝑆 ↾ dom 𝑆) ∈ No ∧ (𝑍 ↾ dom 𝑆) ∈ No ) ∧ (dom (𝑆 ↾ dom 𝑆) ⊆ dom 𝑆 ∧ dom (𝑍 ↾ dom 𝑆) ⊆ dom 𝑆 ∧ ∀𝑔 ∈ dom 𝑆 ¬ ((𝑍 ↾ dom 𝑆) ↾ suc 𝑔) <s ((𝑆 ↾ dom 𝑆) ↾ suc 𝑔))) → ¬ (𝑍 ↾ dom 𝑆) <s (𝑆 ↾ dom 𝑆))
14373, 76, 80, 84, 141, 142syl23anc 1333 . . . 4 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → ¬ (𝑍 ↾ dom 𝑆) <s (𝑆 ↾ dom 𝑆))
144 nofun 31802 . . . . . . 7 (𝑆 No → Fun 𝑆)
14569, 144syl 17 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → Fun 𝑆)
146 funrel 5905 . . . . . 6 (Fun 𝑆 → Rel 𝑆)
147 resdm 5441 . . . . . 6 (Rel 𝑆 → (𝑆 ↾ dom 𝑆) = 𝑆)
148145, 146, 1473syl 18 . . . . 5 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → (𝑆 ↾ dom 𝑆) = 𝑆)
149148breq2d 4665 . . . 4 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → ((𝑍 ↾ dom 𝑆) <s (𝑆 ↾ dom 𝑆) ↔ (𝑍 ↾ dom 𝑆) <s 𝑆))
150143, 149mtbid 314 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍)) → ¬ (𝑍 ↾ dom 𝑆) <s 𝑆)
15166, 150pm2.61ian 831 . 2 (((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) → ¬ (𝑍 ↾ dom 𝑆) <s 𝑆)
152 simpll1 1100 . . . . . 6 ((((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎𝐴) → 𝐴 No )
153 simpll2 1101 . . . . . 6 ((((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎𝐴) → 𝐴 ∈ V)
154 simpr 477 . . . . . 6 ((((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎𝐴) → 𝑎𝐴)
1553nosupbnd1 31860 . . . . . 6 ((𝐴 No 𝐴 ∈ V ∧ 𝑎𝐴) → (𝑎 ↾ dom 𝑆) <s 𝑆)
156152, 153, 154, 155syl3anc 1326 . . . . 5 ((((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎𝐴) → (𝑎 ↾ dom 𝑆) <s 𝑆)
157 simplr 792 . . . . 5 ((((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎𝐴) → ¬ (𝑍 ↾ dom 𝑆) <s 𝑆)
158 simpl1 1064 . . . . . . . 8 (((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) → 𝐴 No )
159158sselda 3603 . . . . . . 7 ((((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎𝐴) → 𝑎 No )
160152, 153, 67syl2anc 693 . . . . . . . 8 ((((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎𝐴) → 𝑆 No )
161160, 70syl 17 . . . . . . 7 ((((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎𝐴) → dom 𝑆 ∈ On)
162 noreson 31813 . . . . . . 7 ((𝑎 No ∧ dom 𝑆 ∈ On) → (𝑎 ↾ dom 𝑆) ∈ No )
163159, 161, 162syl2anc 693 . . . . . 6 ((((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎𝐴) → (𝑎 ↾ dom 𝑆) ∈ No )
164 simpll3 1102 . . . . . . 7 ((((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎𝐴) → 𝑍 No )
165164, 161, 75syl2anc 693 . . . . . 6 ((((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎𝐴) → (𝑍 ↾ dom 𝑆) ∈ No )
166 sotr3 31656 . . . . . . 7 (( <s Or No ∧ ((𝑎 ↾ dom 𝑆) ∈ No 𝑆 No ∧ (𝑍 ↾ dom 𝑆) ∈ No )) → (((𝑎 ↾ dom 𝑆) <s 𝑆 ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) → (𝑎 ↾ dom 𝑆) <s (𝑍 ↾ dom 𝑆)))
16797, 166mpan 706 . . . . . 6 (((𝑎 ↾ dom 𝑆) ∈ No 𝑆 No ∧ (𝑍 ↾ dom 𝑆) ∈ No ) → (((𝑎 ↾ dom 𝑆) <s 𝑆 ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) → (𝑎 ↾ dom 𝑆) <s (𝑍 ↾ dom 𝑆)))
168163, 160, 165, 167syl3anc 1326 . . . . 5 ((((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎𝐴) → (((𝑎 ↾ dom 𝑆) <s 𝑆 ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) → (𝑎 ↾ dom 𝑆) <s (𝑍 ↾ dom 𝑆)))
169156, 157, 168mp2and 715 . . . 4 ((((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎𝐴) → (𝑎 ↾ dom 𝑆) <s (𝑍 ↾ dom 𝑆))
170 sltres 31815 . . . . 5 ((𝑎 No 𝑍 No ∧ dom 𝑆 ∈ On) → ((𝑎 ↾ dom 𝑆) <s (𝑍 ↾ dom 𝑆) → 𝑎 <s 𝑍))
171159, 164, 161, 170syl3anc 1326 . . . 4 ((((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎𝐴) → ((𝑎 ↾ dom 𝑆) <s (𝑍 ↾ dom 𝑆) → 𝑎 <s 𝑍))
172169, 171mpd 15 . . 3 ((((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) ∧ 𝑎𝐴) → 𝑎 <s 𝑍)
173172ralrimiva 2966 . 2 (((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆) → ∀𝑎𝐴 𝑎 <s 𝑍)
174151, 173impbida 877 1 ((𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) → (∀𝑎𝐴 𝑎 <s 𝑍 ↔ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  {cab 2608  wral 2912  wrex 2913  ∃!wreu 2914  ∃*wrmo 2915  Vcvv 3200  cun 3572  cin 3573  wss 3574  ifcif 4086  {csn 4177  cop 4183   class class class wbr 4653  cmpt 4729   Or wor 5034  dom cdm 5114  cres 5116  Rel wrel 5119  Ord word 5722  Oncon0 5723  suc csuc 5725  cio 5849  Fun wfun 5882  cfv 5888  crio 6610  2𝑜c2o 7554   No csur 31793   <s cslt 31794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-1o 7560  df-2o 7561  df-no 31796  df-slt 31797  df-bday 31798
This theorem is referenced by:  noetalem3  31865
  Copyright terms: Public domain W3C validator