MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem1 Structured version   Visualization version   Unicode version

Theorem ackbij1lem1 9042
Description: Lemma for ackbij2 9065. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Assertion
Ref Expression
ackbij1lem1  |-  ( -.  A  e.  B  -> 
( B  i^i  suc  A )  =  ( B  i^i  A ) )

Proof of Theorem ackbij1lem1
StepHypRef Expression
1 df-suc 5729 . . . 4  |-  suc  A  =  ( A  u.  { A } )
21ineq2i 3811 . . 3  |-  ( B  i^i  suc  A )  =  ( B  i^i  ( A  u.  { A } ) )
3 indi 3873 . . 3  |-  ( B  i^i  ( A  u.  { A } ) )  =  ( ( B  i^i  A )  u.  ( B  i^i  { A } ) )
42, 3eqtri 2644 . 2  |-  ( B  i^i  suc  A )  =  ( ( B  i^i  A )  u.  ( B  i^i  { A } ) )
5 disjsn 4246 . . . . 5  |-  ( ( B  i^i  { A } )  =  (/)  <->  -.  A  e.  B )
65biimpri 218 . . . 4  |-  ( -.  A  e.  B  -> 
( B  i^i  { A } )  =  (/) )
76uneq2d 3767 . . 3  |-  ( -.  A  e.  B  -> 
( ( B  i^i  A )  u.  ( B  i^i  { A }
) )  =  ( ( B  i^i  A
)  u.  (/) ) )
8 un0 3967 . . 3  |-  ( ( B  i^i  A )  u.  (/) )  =  ( B  i^i  A )
97, 8syl6eq 2672 . 2  |-  ( -.  A  e.  B  -> 
( ( B  i^i  A )  u.  ( B  i^i  { A }
) )  =  ( B  i^i  A ) )
104, 9syl5eq 2668 1  |-  ( -.  A  e.  B  -> 
( B  i^i  suc  A )  =  ( B  i^i  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1483    e. wcel 1990    u. cun 3572    i^i cin 3573   (/)c0 3915   {csn 4177   suc csuc 5725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-nul 3916  df-sn 4178  df-suc 5729
This theorem is referenced by:  ackbij1lem15  9056  ackbij1lem16  9057
  Copyright terms: Public domain W3C validator