MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acnlem Structured version   Visualization version   GIF version

Theorem acnlem 8871
Description: Construct a mapping satisfying the consequent of isacn 8867. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acnlem ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵 ∈ (𝑓𝑥)) → ∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥))
Distinct variable groups:   𝑓,𝑔,𝑥,𝐴   𝐵,𝑔
Allowed substitution hints:   𝐵(𝑥,𝑓)   𝑉(𝑥,𝑓,𝑔)

Proof of Theorem acnlem
StepHypRef Expression
1 fvssunirn 6217 . . . . . 6 (𝑓𝑥) ⊆ ran 𝑓
2 simpr 477 . . . . . 6 ((𝑥𝐴𝐵 ∈ (𝑓𝑥)) → 𝐵 ∈ (𝑓𝑥))
31, 2sseldi 3601 . . . . 5 ((𝑥𝐴𝐵 ∈ (𝑓𝑥)) → 𝐵 ran 𝑓)
43ralimiaa 2951 . . . 4 (∀𝑥𝐴 𝐵 ∈ (𝑓𝑥) → ∀𝑥𝐴 𝐵 ran 𝑓)
5 eqid 2622 . . . . 5 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
65fmpt 6381 . . . 4 (∀𝑥𝐴 𝐵 ran 𝑓 ↔ (𝑥𝐴𝐵):𝐴 ran 𝑓)
74, 6sylib 208 . . 3 (∀𝑥𝐴 𝐵 ∈ (𝑓𝑥) → (𝑥𝐴𝐵):𝐴 ran 𝑓)
8 id 22 . . 3 (𝐴𝑉𝐴𝑉)
9 vex 3203 . . . . . 6 𝑓 ∈ V
109rnex 7100 . . . . 5 ran 𝑓 ∈ V
1110uniex 6953 . . . 4 ran 𝑓 ∈ V
12 fex2 7121 . . . 4 (((𝑥𝐴𝐵):𝐴 ran 𝑓𝐴𝑉 ran 𝑓 ∈ V) → (𝑥𝐴𝐵) ∈ V)
1311, 12mp3an3 1413 . . 3 (((𝑥𝐴𝐵):𝐴 ran 𝑓𝐴𝑉) → (𝑥𝐴𝐵) ∈ V)
147, 8, 13syl2anr 495 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵 ∈ (𝑓𝑥)) → (𝑥𝐴𝐵) ∈ V)
155fvmpt2 6291 . . . . 5 ((𝑥𝐴𝐵 ∈ (𝑓𝑥)) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
1615, 2eqeltrd 2701 . . . 4 ((𝑥𝐴𝐵 ∈ (𝑓𝑥)) → ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑓𝑥))
1716ralimiaa 2951 . . 3 (∀𝑥𝐴 𝐵 ∈ (𝑓𝑥) → ∀𝑥𝐴 ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑓𝑥))
1817adantl 482 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵 ∈ (𝑓𝑥)) → ∀𝑥𝐴 ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑓𝑥))
19 nfmpt1 4747 . . . . 5 𝑥(𝑥𝐴𝐵)
2019nfeq2 2780 . . . 4 𝑥 𝑔 = (𝑥𝐴𝐵)
21 fveq1 6190 . . . . 5 (𝑔 = (𝑥𝐴𝐵) → (𝑔𝑥) = ((𝑥𝐴𝐵)‘𝑥))
2221eleq1d 2686 . . . 4 (𝑔 = (𝑥𝐴𝐵) → ((𝑔𝑥) ∈ (𝑓𝑥) ↔ ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑓𝑥)))
2320, 22ralbid 2983 . . 3 (𝑔 = (𝑥𝐴𝐵) → (∀𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥) ↔ ∀𝑥𝐴 ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑓𝑥)))
2423spcegv 3294 . 2 ((𝑥𝐴𝐵) ∈ V → (∀𝑥𝐴 ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑓𝑥) → ∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥)))
2514, 18, 24sylc 65 1 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵 ∈ (𝑓𝑥)) → ∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wex 1704  wcel 1990  wral 2912  Vcvv 3200   cuni 4436  cmpt 4729  ran crn 5115  wf 5884  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896
This theorem is referenced by:  numacn  8872  acndom  8874  acndom2  8877
  Copyright terms: Public domain W3C validator