Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-dfat Structured version   Visualization version   GIF version

Definition df-dfat 41196
Description: Definition of the predicate that determines if some class 𝐹 is defined as function for an argument 𝐴 or, in other words, if the function value for some class 𝐹 for an argument 𝐴 is defined. We say that 𝐹 is defined at 𝐴 if a 𝐹 is a function restricted to the member 𝐴 of its domain. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
df-dfat (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))

Detailed syntax breakdown of Definition df-dfat
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cF . . 3 class 𝐹
31, 2wdfat 41193 . 2 wff 𝐹 defAt 𝐴
42cdm 5114 . . . 4 class dom 𝐹
51, 4wcel 1990 . . 3 wff 𝐴 ∈ dom 𝐹
61csn 4177 . . . . 5 class {𝐴}
72, 6cres 5116 . . . 4 class (𝐹 ↾ {𝐴})
87wfun 5882 . . 3 wff Fun (𝐹 ↾ {𝐴})
95, 8wa 384 . 2 wff (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))
103, 9wb 196 1 wff (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
Colors of variables: wff setvar class
This definition is referenced by:  dfateq12d  41209  nfdfat  41210  dfdfat2  41211  ndmafv  41220  nfunsnafv  41222  afvpcfv0  41226  afvfvn0fveq  41230  afv0nbfvbi  41231  fnbrafvb  41234  afvelrn  41248  afvres  41252  tz6.12-afv  41253  dmfcoafv  41255  afvco2  41256  aovmpt4g  41281
  Copyright terms: Public domain W3C validator