HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cdj3lem3 Structured version   Visualization version   GIF version

Theorem cdj3lem3 29297
Description: Lemma for cdj3i 29300. Value of the second-component function 𝑇. (Contributed by NM, 23-May-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdj3lem2.1 𝐴S
cdj3lem2.2 𝐵S
cdj3lem3.3 𝑇 = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑤𝐵𝑧𝐴 𝑥 = (𝑧 + 𝑤)))
Assertion
Ref Expression
cdj3lem3 ((𝐶𝐴𝐷𝐵 ∧ (𝐴𝐵) = 0) → (𝑇‘(𝐶 + 𝐷)) = 𝐷)
Distinct variable groups:   𝑥,𝑧,𝑤,𝐴   𝑥,𝐵,𝑧,𝑤   𝑥,𝐶,𝑧,𝑤   𝑥,𝐷,𝑧,𝑤
Allowed substitution hints:   𝑇(𝑥,𝑧,𝑤)

Proof of Theorem cdj3lem3
StepHypRef Expression
1 incom 3805 . . . 4 (𝐴𝐵) = (𝐵𝐴)
21eqeq1i 2627 . . 3 ((𝐴𝐵) = 0 ↔ (𝐵𝐴) = 0)
3 cdj3lem2.2 . . . . . . . 8 𝐵S
43sheli 28071 . . . . . . 7 (𝐷𝐵𝐷 ∈ ℋ)
5 cdj3lem2.1 . . . . . . . 8 𝐴S
65sheli 28071 . . . . . . 7 (𝐶𝐴𝐶 ∈ ℋ)
7 ax-hvcom 27858 . . . . . . 7 ((𝐷 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐷 + 𝐶) = (𝐶 + 𝐷))
84, 6, 7syl2an 494 . . . . . 6 ((𝐷𝐵𝐶𝐴) → (𝐷 + 𝐶) = (𝐶 + 𝐷))
98fveq2d 6195 . . . . 5 ((𝐷𝐵𝐶𝐴) → (𝑇‘(𝐷 + 𝐶)) = (𝑇‘(𝐶 + 𝐷)))
1093adant3 1081 . . . 4 ((𝐷𝐵𝐶𝐴 ∧ (𝐵𝐴) = 0) → (𝑇‘(𝐷 + 𝐶)) = (𝑇‘(𝐶 + 𝐷)))
11 cdj3lem3.3 . . . . . 6 𝑇 = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑤𝐵𝑧𝐴 𝑥 = (𝑧 + 𝑤)))
123, 5shscomi 28222 . . . . . . 7 (𝐵 + 𝐴) = (𝐴 + 𝐵)
133sheli 28071 . . . . . . . . . . 11 (𝑤𝐵𝑤 ∈ ℋ)
145sheli 28071 . . . . . . . . . . 11 (𝑧𝐴𝑧 ∈ ℋ)
15 ax-hvcom 27858 . . . . . . . . . . 11 ((𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑤 + 𝑧) = (𝑧 + 𝑤))
1613, 14, 15syl2an 494 . . . . . . . . . 10 ((𝑤𝐵𝑧𝐴) → (𝑤 + 𝑧) = (𝑧 + 𝑤))
1716eqeq2d 2632 . . . . . . . . 9 ((𝑤𝐵𝑧𝐴) → (𝑥 = (𝑤 + 𝑧) ↔ 𝑥 = (𝑧 + 𝑤)))
1817rexbidva 3049 . . . . . . . 8 (𝑤𝐵 → (∃𝑧𝐴 𝑥 = (𝑤 + 𝑧) ↔ ∃𝑧𝐴 𝑥 = (𝑧 + 𝑤)))
1918riotabiia 6628 . . . . . . 7 (𝑤𝐵𝑧𝐴 𝑥 = (𝑤 + 𝑧)) = (𝑤𝐵𝑧𝐴 𝑥 = (𝑧 + 𝑤))
2012, 19mpteq12i 4742 . . . . . 6 (𝑥 ∈ (𝐵 + 𝐴) ↦ (𝑤𝐵𝑧𝐴 𝑥 = (𝑤 + 𝑧))) = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑤𝐵𝑧𝐴 𝑥 = (𝑧 + 𝑤)))
2111, 20eqtr4i 2647 . . . . 5 𝑇 = (𝑥 ∈ (𝐵 + 𝐴) ↦ (𝑤𝐵𝑧𝐴 𝑥 = (𝑤 + 𝑧)))
223, 5, 21cdj3lem2 29294 . . . 4 ((𝐷𝐵𝐶𝐴 ∧ (𝐵𝐴) = 0) → (𝑇‘(𝐷 + 𝐶)) = 𝐷)
2310, 22eqtr3d 2658 . . 3 ((𝐷𝐵𝐶𝐴 ∧ (𝐵𝐴) = 0) → (𝑇‘(𝐶 + 𝐷)) = 𝐷)
242, 23syl3an3b 1364 . 2 ((𝐷𝐵𝐶𝐴 ∧ (𝐴𝐵) = 0) → (𝑇‘(𝐶 + 𝐷)) = 𝐷)
25243com12 1269 1 ((𝐶𝐴𝐷𝐵 ∧ (𝐴𝐵) = 0) → (𝑇‘(𝐶 + 𝐷)) = 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wrex 2913  cin 3573  cmpt 4729  cfv 5888  crio 6610  (class class class)co 6650  chil 27776   + cva 27777   S csh 27785   + cph 27788  0c0h 27792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-hilex 27856  ax-hfvadd 27857  ax-hvcom 27858  ax-hvass 27859  ax-hv0cl 27860  ax-hvaddid 27861  ax-hfvmul 27862  ax-hvmulid 27863  ax-hvmulass 27864  ax-hvdistr1 27865  ax-hvdistr2 27866  ax-hvmul0 27867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-grpo 27347  df-ablo 27399  df-hvsub 27828  df-sh 28064  df-ch0 28110  df-shs 28167
This theorem is referenced by:  cdj3lem3a  29298  cdj3i  29300
  Copyright terms: Public domain W3C validator