HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chscllem4 Structured version   Visualization version   GIF version

Theorem chscllem4 28499
Description: Lemma for chscl 28500. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
chscl.1 (𝜑𝐴C )
chscl.2 (𝜑𝐵C )
chscl.3 (𝜑𝐵 ⊆ (⊥‘𝐴))
chscl.4 (𝜑𝐻:ℕ⟶(𝐴 + 𝐵))
chscl.5 (𝜑𝐻𝑣 𝑢)
chscl.6 𝐹 = (𝑛 ∈ ℕ ↦ ((proj𝐴)‘(𝐻𝑛)))
chscl.7 𝐺 = (𝑛 ∈ ℕ ↦ ((proj𝐵)‘(𝐻𝑛)))
Assertion
Ref Expression
chscllem4 (𝜑𝑢 ∈ (𝐴 + 𝐵))
Distinct variable groups:   𝑢,𝑛,𝐴   𝜑,𝑛   𝐵,𝑛,𝑢   𝑛,𝐻,𝑢
Allowed substitution hints:   𝜑(𝑢)   𝐹(𝑢,𝑛)   𝐺(𝑢,𝑛)

Proof of Theorem chscllem4
Dummy variables 𝑥 𝑦 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hlimf 28094 . . . . 5 𝑣 :dom ⇝𝑣 ⟶ ℋ
2 ffun 6048 . . . . 5 ( ⇝𝑣 :dom ⇝𝑣 ⟶ ℋ → Fun ⇝𝑣 )
31, 2ax-mp 5 . . . 4 Fun ⇝𝑣
4 chscl.5 . . . 4 (𝜑𝐻𝑣 𝑢)
5 funbrfv 6234 . . . 4 (Fun ⇝𝑣 → (𝐻𝑣 𝑢 → ( ⇝𝑣𝐻) = 𝑢))
63, 4, 5mpsyl 68 . . 3 (𝜑 → ( ⇝𝑣𝐻) = 𝑢)
7 chscl.4 . . . . . . 7 (𝜑𝐻:ℕ⟶(𝐴 + 𝐵))
87feqmptd 6249 . . . . . 6 (𝜑𝐻 = (𝑘 ∈ ℕ ↦ (𝐻𝑘)))
97ffvelrnda 6359 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐻𝑘) ∈ (𝐴 + 𝐵))
10 chscl.1 . . . . . . . . . . . 12 (𝜑𝐴C )
11 chsh 28081 . . . . . . . . . . . 12 (𝐴C𝐴S )
1210, 11syl 17 . . . . . . . . . . 11 (𝜑𝐴S )
13 chscl.2 . . . . . . . . . . . 12 (𝜑𝐵C )
14 chsh 28081 . . . . . . . . . . . 12 (𝐵C𝐵S )
1513, 14syl 17 . . . . . . . . . . 11 (𝜑𝐵S )
16 shsel 28173 . . . . . . . . . . 11 ((𝐴S𝐵S ) → ((𝐻𝑘) ∈ (𝐴 + 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 (𝐻𝑘) = (𝑥 + 𝑦)))
1712, 15, 16syl2anc 693 . . . . . . . . . 10 (𝜑 → ((𝐻𝑘) ∈ (𝐴 + 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 (𝐻𝑘) = (𝑥 + 𝑦)))
1817biimpa 501 . . . . . . . . 9 ((𝜑 ∧ (𝐻𝑘) ∈ (𝐴 + 𝐵)) → ∃𝑥𝐴𝑦𝐵 (𝐻𝑘) = (𝑥 + 𝑦))
199, 18syldan 487 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ∃𝑥𝐴𝑦𝐵 (𝐻𝑘) = (𝑥 + 𝑦))
20 simp3 1063 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → (𝐻𝑘) = (𝑥 + 𝑦))
21 simp1l 1085 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝜑)
2221, 10syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝐴C )
2321, 13syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝐵C )
24 chscl.3 . . . . . . . . . . . . . 14 (𝜑𝐵 ⊆ (⊥‘𝐴))
2521, 24syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝐵 ⊆ (⊥‘𝐴))
2621, 7syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝐻:ℕ⟶(𝐴 + 𝐵))
2721, 4syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝐻𝑣 𝑢)
28 chscl.6 . . . . . . . . . . . . 13 𝐹 = (𝑛 ∈ ℕ ↦ ((proj𝐴)‘(𝐻𝑛)))
29 simp1r 1086 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝑘 ∈ ℕ)
30 simp2l 1087 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝑥𝐴)
31 simp2r 1088 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝑦𝐵)
3222, 23, 25, 26, 27, 28, 29, 30, 31, 20chscllem3 28498 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝑥 = (𝐹𝑘))
33 chsscon2 28361 . . . . . . . . . . . . . . . 16 ((𝐵C𝐴C ) → (𝐵 ⊆ (⊥‘𝐴) ↔ 𝐴 ⊆ (⊥‘𝐵)))
3413, 10, 33syl2anc 693 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 ⊆ (⊥‘𝐴) ↔ 𝐴 ⊆ (⊥‘𝐵)))
3524, 34mpbid 222 . . . . . . . . . . . . . 14 (𝜑𝐴 ⊆ (⊥‘𝐵))
3621, 35syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝐴 ⊆ (⊥‘𝐵))
37 shscom 28178 . . . . . . . . . . . . . . . . 17 ((𝐴S𝐵S ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
3812, 15, 37syl2anc 693 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴))
3938feq3d 6032 . . . . . . . . . . . . . . 15 (𝜑 → (𝐻:ℕ⟶(𝐴 + 𝐵) ↔ 𝐻:ℕ⟶(𝐵 + 𝐴)))
407, 39mpbid 222 . . . . . . . . . . . . . 14 (𝜑𝐻:ℕ⟶(𝐵 + 𝐴))
4121, 40syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝐻:ℕ⟶(𝐵 + 𝐴))
42 chscl.7 . . . . . . . . . . . . 13 𝐺 = (𝑛 ∈ ℕ ↦ ((proj𝐵)‘(𝐻𝑛)))
43 shss 28067 . . . . . . . . . . . . . . . . . 18 (𝐴S𝐴 ⊆ ℋ)
4412, 43syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ⊆ ℋ)
4521, 44syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝐴 ⊆ ℋ)
4645, 30sseldd 3604 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝑥 ∈ ℋ)
47 shss 28067 . . . . . . . . . . . . . . . . . 18 (𝐵S𝐵 ⊆ ℋ)
4815, 47syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ⊆ ℋ)
4921, 48syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝐵 ⊆ ℋ)
5049, 31sseldd 3604 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝑦 ∈ ℋ)
51 ax-hvcom 27858 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
5246, 50, 51syl2anc 693 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
5320, 52eqtrd 2656 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → (𝐻𝑘) = (𝑦 + 𝑥))
5423, 22, 36, 41, 27, 42, 29, 31, 30, 53chscllem3 28498 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝑦 = (𝐺𝑘))
5532, 54oveq12d 6668 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → (𝑥 + 𝑦) = ((𝐹𝑘) + (𝐺𝑘)))
5620, 55eqtrd 2656 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → (𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘)))
57563exp 1264 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((𝑥𝐴𝑦𝐵) → ((𝐻𝑘) = (𝑥 + 𝑦) → (𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘)))))
5857rexlimdvv 3037 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (∃𝑥𝐴𝑦𝐵 (𝐻𝑘) = (𝑥 + 𝑦) → (𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘))))
5919, 58mpd 15 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘)))
6059mpteq2dva 4744 . . . . . 6 (𝜑 → (𝑘 ∈ ℕ ↦ (𝐻𝑘)) = (𝑘 ∈ ℕ ↦ ((𝐹𝑘) + (𝐺𝑘))))
618, 60eqtrd 2656 . . . . 5 (𝜑𝐻 = (𝑘 ∈ ℕ ↦ ((𝐹𝑘) + (𝐺𝑘))))
6210, 13, 24, 7, 4, 28chscllem1 28496 . . . . . . 7 (𝜑𝐹:ℕ⟶𝐴)
6362, 44fssd 6057 . . . . . 6 (𝜑𝐹:ℕ⟶ ℋ)
6413, 10, 35, 40, 4, 42chscllem1 28496 . . . . . . 7 (𝜑𝐺:ℕ⟶𝐵)
6564, 48fssd 6057 . . . . . 6 (𝜑𝐺:ℕ⟶ ℋ)
6610, 13, 24, 7, 4, 28chscllem2 28497 . . . . . . 7 (𝜑𝐹 ∈ dom ⇝𝑣 )
67 funfvbrb 6330 . . . . . . . 8 (Fun ⇝𝑣 → (𝐹 ∈ dom ⇝𝑣𝐹𝑣 ( ⇝𝑣𝐹)))
683, 67ax-mp 5 . . . . . . 7 (𝐹 ∈ dom ⇝𝑣𝐹𝑣 ( ⇝𝑣𝐹))
6966, 68sylib 208 . . . . . 6 (𝜑𝐹𝑣 ( ⇝𝑣𝐹))
7013, 10, 35, 40, 4, 42chscllem2 28497 . . . . . . 7 (𝜑𝐺 ∈ dom ⇝𝑣 )
71 funfvbrb 6330 . . . . . . . 8 (Fun ⇝𝑣 → (𝐺 ∈ dom ⇝𝑣𝐺𝑣 ( ⇝𝑣𝐺)))
723, 71ax-mp 5 . . . . . . 7 (𝐺 ∈ dom ⇝𝑣𝐺𝑣 ( ⇝𝑣𝐺))
7370, 72sylib 208 . . . . . 6 (𝜑𝐺𝑣 ( ⇝𝑣𝐺))
74 eqid 2622 . . . . . 6 (𝑘 ∈ ℕ ↦ ((𝐹𝑘) + (𝐺𝑘))) = (𝑘 ∈ ℕ ↦ ((𝐹𝑘) + (𝐺𝑘)))
7563, 65, 69, 73, 74hlimadd 28050 . . . . 5 (𝜑 → (𝑘 ∈ ℕ ↦ ((𝐹𝑘) + (𝐺𝑘))) ⇝𝑣 (( ⇝𝑣𝐹) + ( ⇝𝑣𝐺)))
7661, 75eqbrtrd 4675 . . . 4 (𝜑𝐻𝑣 (( ⇝𝑣𝐹) + ( ⇝𝑣𝐺)))
77 funbrfv 6234 . . . 4 (Fun ⇝𝑣 → (𝐻𝑣 (( ⇝𝑣𝐹) + ( ⇝𝑣𝐺)) → ( ⇝𝑣𝐻) = (( ⇝𝑣𝐹) + ( ⇝𝑣𝐺))))
783, 76, 77mpsyl 68 . . 3 (𝜑 → ( ⇝𝑣𝐻) = (( ⇝𝑣𝐹) + ( ⇝𝑣𝐺)))
796, 78eqtr3d 2658 . 2 (𝜑𝑢 = (( ⇝𝑣𝐹) + ( ⇝𝑣𝐺)))
80 fvex 6201 . . . . 5 ( ⇝𝑣𝐹) ∈ V
8180chlimi 28091 . . . 4 ((𝐴C𝐹:ℕ⟶𝐴𝐹𝑣 ( ⇝𝑣𝐹)) → ( ⇝𝑣𝐹) ∈ 𝐴)
8210, 62, 69, 81syl3anc 1326 . . 3 (𝜑 → ( ⇝𝑣𝐹) ∈ 𝐴)
83 fvex 6201 . . . . 5 ( ⇝𝑣𝐺) ∈ V
8483chlimi 28091 . . . 4 ((𝐵C𝐺:ℕ⟶𝐵𝐺𝑣 ( ⇝𝑣𝐺)) → ( ⇝𝑣𝐺) ∈ 𝐵)
8513, 64, 73, 84syl3anc 1326 . . 3 (𝜑 → ( ⇝𝑣𝐺) ∈ 𝐵)
86 shsva 28179 . . . 4 ((𝐴S𝐵S ) → ((( ⇝𝑣𝐹) ∈ 𝐴 ∧ ( ⇝𝑣𝐺) ∈ 𝐵) → (( ⇝𝑣𝐹) + ( ⇝𝑣𝐺)) ∈ (𝐴 + 𝐵)))
8712, 15, 86syl2anc 693 . . 3 (𝜑 → ((( ⇝𝑣𝐹) ∈ 𝐴 ∧ ( ⇝𝑣𝐺) ∈ 𝐵) → (( ⇝𝑣𝐹) + ( ⇝𝑣𝐺)) ∈ (𝐴 + 𝐵)))
8882, 85, 87mp2and 715 . 2 (𝜑 → (( ⇝𝑣𝐹) + ( ⇝𝑣𝐺)) ∈ (𝐴 + 𝐵))
8979, 88eqeltrd 2701 1 (𝜑𝑢 ∈ (𝐴 + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wrex 2913  wss 3574   class class class wbr 4653  cmpt 4729  dom cdm 5114  Fun wfun 5882  wf 5884  cfv 5888  (class class class)co 6650  cn 11020  chil 27776   + cva 27777  𝑣 chli 27784   S csh 27785   C cch 27786  cort 27787   + cph 27788  projcpjh 27794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016  ax-hilex 27856  ax-hfvadd 27857  ax-hvcom 27858  ax-hvass 27859  ax-hv0cl 27860  ax-hvaddid 27861  ax-hfvmul 27862  ax-hvmulid 27863  ax-hvmulass 27864  ax-hvdistr1 27865  ax-hvdistr2 27866  ax-hvmul0 27867  ax-hfi 27936  ax-his1 27939  ax-his2 27940  ax-his3 27941  ax-his4 27942  ax-hcompl 28059
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cn 21031  df-cnp 21032  df-lm 21033  df-haus 21119  df-tx 21365  df-hmeo 21558  df-xms 22125  df-tms 22127  df-cau 23054  df-grpo 27347  df-gid 27348  df-ginv 27349  df-gdiv 27350  df-ablo 27399  df-vc 27414  df-nv 27447  df-va 27450  df-ba 27451  df-sm 27452  df-0v 27453  df-vs 27454  df-nmcv 27455  df-ims 27456  df-hnorm 27825  df-hba 27826  df-hvsub 27828  df-hlim 27829  df-hcau 27830  df-sh 28064  df-ch 28078  df-oc 28109  df-ch0 28110  df-shs 28167  df-pjh 28254
This theorem is referenced by:  chscl  28500
  Copyright terms: Public domain W3C validator