Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemsval Structured version   Visualization version   GIF version

Theorem ballotlemsval 30570
Description: Value of 𝑆. (Contributed by Thierry Arnoux, 12-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
ballotth.s 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
Assertion
Ref Expression
ballotlemsval (𝐶 ∈ (𝑂𝐸) → (𝑆𝐶) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖)))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝐶,𝑖,𝑘   𝑖,𝐸,𝑘   𝐶,𝑘   𝑘,𝐼,𝑐   𝐸,𝑐   𝑖,𝐼,𝑐
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑘,𝑐)   𝑆(𝑥,𝑖,𝑘,𝑐)   𝐸(𝑥)   𝐹(𝑥)   𝐼(𝑥)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemsval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . . . . 6 ((𝑑 = 𝐶𝑖 ∈ (1...(𝑀 + 𝑁))) → 𝑑 = 𝐶)
21fveq2d 6195 . . . . 5 ((𝑑 = 𝐶𝑖 ∈ (1...(𝑀 + 𝑁))) → (𝐼𝑑) = (𝐼𝐶))
32breq2d 4665 . . . 4 ((𝑑 = 𝐶𝑖 ∈ (1...(𝑀 + 𝑁))) → (𝑖 ≤ (𝐼𝑑) ↔ 𝑖 ≤ (𝐼𝐶)))
42oveq1d 6665 . . . . 5 ((𝑑 = 𝐶𝑖 ∈ (1...(𝑀 + 𝑁))) → ((𝐼𝑑) + 1) = ((𝐼𝐶) + 1))
54oveq1d 6665 . . . 4 ((𝑑 = 𝐶𝑖 ∈ (1...(𝑀 + 𝑁))) → (((𝐼𝑑) + 1) − 𝑖) = (((𝐼𝐶) + 1) − 𝑖))
63, 5ifbieq1d 4109 . . 3 ((𝑑 = 𝐶𝑖 ∈ (1...(𝑀 + 𝑁))) → if(𝑖 ≤ (𝐼𝑑), (((𝐼𝑑) + 1) − 𝑖), 𝑖) = if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖))
76mpteq2dva 4744 . 2 (𝑑 = 𝐶 → (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑑), (((𝐼𝑑) + 1) − 𝑖), 𝑖)) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖)))
8 ballotth.s . . 3 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
9 simpl 473 . . . . . . . 8 ((𝑐 = 𝑑𝑖 ∈ (1...(𝑀 + 𝑁))) → 𝑐 = 𝑑)
109fveq2d 6195 . . . . . . 7 ((𝑐 = 𝑑𝑖 ∈ (1...(𝑀 + 𝑁))) → (𝐼𝑐) = (𝐼𝑑))
1110breq2d 4665 . . . . . 6 ((𝑐 = 𝑑𝑖 ∈ (1...(𝑀 + 𝑁))) → (𝑖 ≤ (𝐼𝑐) ↔ 𝑖 ≤ (𝐼𝑑)))
1210oveq1d 6665 . . . . . . 7 ((𝑐 = 𝑑𝑖 ∈ (1...(𝑀 + 𝑁))) → ((𝐼𝑐) + 1) = ((𝐼𝑑) + 1))
1312oveq1d 6665 . . . . . 6 ((𝑐 = 𝑑𝑖 ∈ (1...(𝑀 + 𝑁))) → (((𝐼𝑐) + 1) − 𝑖) = (((𝐼𝑑) + 1) − 𝑖))
1411, 13ifbieq1d 4109 . . . . 5 ((𝑐 = 𝑑𝑖 ∈ (1...(𝑀 + 𝑁))) → if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖) = if(𝑖 ≤ (𝐼𝑑), (((𝐼𝑑) + 1) − 𝑖), 𝑖))
1514mpteq2dva 4744 . . . 4 (𝑐 = 𝑑 → (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑑), (((𝐼𝑑) + 1) − 𝑖), 𝑖)))
1615cbvmptv 4750 . . 3 (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖))) = (𝑑 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑑), (((𝐼𝑑) + 1) − 𝑖), 𝑖)))
178, 16eqtri 2644 . 2 𝑆 = (𝑑 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑑), (((𝐼𝑑) + 1) − 𝑖), 𝑖)))
18 ovex 6678 . . 3 (1...(𝑀 + 𝑁)) ∈ V
1918mptex 6486 . 2 (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖)) ∈ V
207, 17, 19fvmpt 6282 1 (𝐶 ∈ (𝑂𝐸) → (𝑆𝐶) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  {crab 2916  cdif 3571  cin 3573  ifcif 4086  𝒫 cpw 4158   class class class wbr 4653  cmpt 4729  cfv 5888  (class class class)co 6650  infcinf 8347  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  cn 11020  cz 11377  ...cfz 12326  #chash 13117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653
This theorem is referenced by:  ballotlemsv  30571  ballotlemsf1o  30575  ballotlemieq  30578
  Copyright terms: Public domain W3C validator