Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlem1c Structured version   Visualization version   GIF version

Theorem ballotlem1c 30569
Description: If the first vote is for A, the vote on the first tie is for B. (Contributed by Thierry Arnoux, 4-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
Assertion
Ref Expression
ballotlem1c ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → ¬ (𝐼𝐶) ∈ 𝐶)
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝐶,𝑖,𝑘   𝑖,𝐸,𝑘   𝐶,𝑘   𝑘,𝐼   𝑘,𝑐,𝐸   𝑖,𝐼
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑘,𝑐)   𝐸(𝑥)   𝐹(𝑥)   𝐼(𝑥,𝑐)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlem1c
StepHypRef Expression
1 ballotth.m . . 3 𝑀 ∈ ℕ
2 ballotth.n . . 3 𝑁 ∈ ℕ
3 ballotth.o . . 3 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}
4 ballotth.p . . 3 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))
5 ballotth.f . . 3 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))
6 eldifi 3732 . . . 4 (𝐶 ∈ (𝑂𝐸) → 𝐶𝑂)
76ad2antrr 762 . . 3 (((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) ∧ (𝐼𝐶) ∈ 𝐶) → 𝐶𝑂)
8 ballotth.e . . . . . . . . . 10 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
9 ballotth.mgtn . . . . . . . . . 10 𝑁 < 𝑀
10 ballotth.i . . . . . . . . . 10 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
111, 2, 3, 4, 5, 8, 9, 10ballotlemiex 30563 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘(𝐼𝐶)) = 0))
1211simpld 475 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ (1...(𝑀 + 𝑁)))
13 elfznn 12370 . . . . . . . 8 ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼𝐶) ∈ ℕ)
1412, 13syl 17 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ ℕ)
1514adantr 481 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → (𝐼𝐶) ∈ ℕ)
161, 2, 3, 4, 5, 8, 9, 10ballotlemii 30565 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → (𝐼𝐶) ≠ 1)
17 eluz2b3 11762 . . . . . 6 ((𝐼𝐶) ∈ (ℤ‘2) ↔ ((𝐼𝐶) ∈ ℕ ∧ (𝐼𝐶) ≠ 1))
1815, 16, 17sylanbrc 698 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → (𝐼𝐶) ∈ (ℤ‘2))
19 uz2m1nn 11763 . . . . 5 ((𝐼𝐶) ∈ (ℤ‘2) → ((𝐼𝐶) − 1) ∈ ℕ)
2018, 19syl 17 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → ((𝐼𝐶) − 1) ∈ ℕ)
2120adantr 481 . . 3 (((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) ∧ (𝐼𝐶) ∈ 𝐶) → ((𝐼𝐶) − 1) ∈ ℕ)
22 elnnuz 11724 . . . . . . 7 (((𝐼𝐶) − 1) ∈ ℕ ↔ ((𝐼𝐶) − 1) ∈ (ℤ‘1))
2322biimpi 206 . . . . . 6 (((𝐼𝐶) − 1) ∈ ℕ → ((𝐼𝐶) − 1) ∈ (ℤ‘1))
24 eluzfz1 12348 . . . . . 6 (((𝐼𝐶) − 1) ∈ (ℤ‘1) → 1 ∈ (1...((𝐼𝐶) − 1)))
2520, 23, 243syl 18 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → 1 ∈ (1...((𝐼𝐶) − 1)))
2625adantr 481 . . . 4 (((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) ∧ (𝐼𝐶) ∈ 𝐶) → 1 ∈ (1...((𝐼𝐶) − 1)))
27 0le1 10551 . . . . . . 7 0 ≤ 1
28 1e0p1 11552 . . . . . . 7 1 = (0 + 1)
2927, 28breqtri 4678 . . . . . 6 0 ≤ (0 + 1)
30 1nn 11031 . . . . . . . . . . 11 1 ∈ ℕ
3130a1i 11 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → 1 ∈ ℕ)
321, 2, 3, 4, 5, 6, 31ballotlemfp1 30553 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → ((¬ 1 ∈ 𝐶 → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) − 1)) ∧ (1 ∈ 𝐶 → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) + 1))))
3332simprd 479 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → (1 ∈ 𝐶 → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) + 1)))
3433imp 445 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) + 1))
35 1m1e0 11089 . . . . . . . . . 10 (1 − 1) = 0
3635fveq2i 6194 . . . . . . . . 9 ((𝐹𝐶)‘(1 − 1)) = ((𝐹𝐶)‘0)
3736oveq1i 6660 . . . . . . . 8 (((𝐹𝐶)‘(1 − 1)) + 1) = (((𝐹𝐶)‘0) + 1)
3837a1i 11 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → (((𝐹𝐶)‘(1 − 1)) + 1) = (((𝐹𝐶)‘0) + 1))
391, 2, 3, 4, 5ballotlemfval0 30557 . . . . . . . . . 10 (𝐶𝑂 → ((𝐹𝐶)‘0) = 0)
406, 39syl 17 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → ((𝐹𝐶)‘0) = 0)
4140adantr 481 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → ((𝐹𝐶)‘0) = 0)
4241oveq1d 6665 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → (((𝐹𝐶)‘0) + 1) = (0 + 1))
4334, 38, 423eqtrrd 2661 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → (0 + 1) = ((𝐹𝐶)‘1))
4429, 43syl5breq 4690 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → 0 ≤ ((𝐹𝐶)‘1))
4544adantr 481 . . . 4 (((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) ∧ (𝐼𝐶) ∈ 𝐶) → 0 ≤ ((𝐹𝐶)‘1))
46 fveq2 6191 . . . . . 6 (𝑖 = 1 → ((𝐹𝐶)‘𝑖) = ((𝐹𝐶)‘1))
4746breq2d 4665 . . . . 5 (𝑖 = 1 → (0 ≤ ((𝐹𝐶)‘𝑖) ↔ 0 ≤ ((𝐹𝐶)‘1)))
4847rspcev 3309 . . . 4 ((1 ∈ (1...((𝐼𝐶) − 1)) ∧ 0 ≤ ((𝐹𝐶)‘1)) → ∃𝑖 ∈ (1...((𝐼𝐶) − 1))0 ≤ ((𝐹𝐶)‘𝑖))
4926, 45, 48syl2anc 693 . . 3 (((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) ∧ (𝐼𝐶) ∈ 𝐶) → ∃𝑖 ∈ (1...((𝐼𝐶) − 1))0 ≤ ((𝐹𝐶)‘𝑖))
50 df-neg 10269 . . . . . 6 -1 = (0 − 1)
511, 2, 3, 4, 5, 6, 14ballotlemfp1 30553 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → ((¬ (𝐼𝐶) ∈ 𝐶 → ((𝐹𝐶)‘(𝐼𝐶)) = (((𝐹𝐶)‘((𝐼𝐶) − 1)) − 1)) ∧ ((𝐼𝐶) ∈ 𝐶 → ((𝐹𝐶)‘(𝐼𝐶)) = (((𝐹𝐶)‘((𝐼𝐶) − 1)) + 1))))
5251simprd 479 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) ∈ 𝐶 → ((𝐹𝐶)‘(𝐼𝐶)) = (((𝐹𝐶)‘((𝐼𝐶) − 1)) + 1)))
5352imp 445 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ 𝐶) → ((𝐹𝐶)‘(𝐼𝐶)) = (((𝐹𝐶)‘((𝐼𝐶) − 1)) + 1))
5411simprd 479 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → ((𝐹𝐶)‘(𝐼𝐶)) = 0)
5554adantr 481 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ 𝐶) → ((𝐹𝐶)‘(𝐼𝐶)) = 0)
5653, 55eqtr3d 2658 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ 𝐶) → (((𝐹𝐶)‘((𝐼𝐶) − 1)) + 1) = 0)
57 0cnd 10033 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ 𝐶) → 0 ∈ ℂ)
58 1cnd 10056 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ 𝐶) → 1 ∈ ℂ)
596adantr 481 . . . . . . . . . 10 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ 𝐶) → 𝐶𝑂)
6014nnzd 11481 . . . . . . . . . . . 12 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ ℤ)
6160adantr 481 . . . . . . . . . . 11 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ 𝐶) → (𝐼𝐶) ∈ ℤ)
62 1zzd 11408 . . . . . . . . . . 11 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ 𝐶) → 1 ∈ ℤ)
6361, 62zsubcld 11487 . . . . . . . . . 10 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ 𝐶) → ((𝐼𝐶) − 1) ∈ ℤ)
641, 2, 3, 4, 5, 59, 63ballotlemfelz 30552 . . . . . . . . 9 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ 𝐶) → ((𝐹𝐶)‘((𝐼𝐶) − 1)) ∈ ℤ)
6564zcnd 11483 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ 𝐶) → ((𝐹𝐶)‘((𝐼𝐶) − 1)) ∈ ℂ)
6657, 58, 65subadd2d 10411 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ 𝐶) → ((0 − 1) = ((𝐹𝐶)‘((𝐼𝐶) − 1)) ↔ (((𝐹𝐶)‘((𝐼𝐶) − 1)) + 1) = 0))
6756, 66mpbird 247 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ 𝐶) → (0 − 1) = ((𝐹𝐶)‘((𝐼𝐶) − 1)))
6850, 67syl5eq 2668 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ 𝐶) → -1 = ((𝐹𝐶)‘((𝐼𝐶) − 1)))
69 neg1lt0 11127 . . . . 5 -1 < 0
7068, 69syl6eqbrr 4693 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ 𝐶) → ((𝐹𝐶)‘((𝐼𝐶) − 1)) < 0)
7170adantlr 751 . . 3 (((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) ∧ (𝐼𝐶) ∈ 𝐶) → ((𝐹𝐶)‘((𝐼𝐶) − 1)) < 0)
721, 2, 3, 4, 5, 7, 21, 49, 71ballotlemfcc 30555 . 2 (((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) ∧ (𝐼𝐶) ∈ 𝐶) → ∃𝑘 ∈ (1...((𝐼𝐶) − 1))((𝐹𝐶)‘𝑘) = 0)
731, 2, 3, 4, 5, 8, 9, 10ballotlemimin 30567 . . 3 (𝐶 ∈ (𝑂𝐸) → ¬ ∃𝑘 ∈ (1...((𝐼𝐶) − 1))((𝐹𝐶)‘𝑘) = 0)
7473ad2antrr 762 . 2 (((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) ∧ (𝐼𝐶) ∈ 𝐶) → ¬ ∃𝑘 ∈ (1...((𝐼𝐶) − 1))((𝐹𝐶)‘𝑘) = 0)
7572, 74pm2.65da 600 1 ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → ¬ (𝐼𝐶) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  {crab 2916  cdif 3571  cin 3573  𝒫 cpw 4158   class class class wbr 4653  cmpt 4729  cfv 5888  (class class class)co 6650  infcinf 8347  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   < clt 10074  cle 10075  cmin 10266  -cneg 10267   / cdiv 10684  cn 11020  2c2 11070  cz 11377  cuz 11687  ...cfz 12326  #chash 13117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118
This theorem is referenced by:  ballotlem7  30597
  Copyright terms: Public domain W3C validator