MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcval Structured version   Visualization version   GIF version

Theorem bcval 13091
Description: Value of the binomial coefficient, 𝑁 choose 𝐾. Definition of binomial coefficient in [Gleason] p. 295. As suggested by Gleason, we define it to be 0 when 0 ≤ 𝐾𝑁 does not hold. See bcval2 13092 for the value in the standard domain. (Contributed by NM, 10-Jul-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
bcval ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝑁C𝐾) = if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))), 0))

Proof of Theorem bcval
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6658 . . . 4 (𝑛 = 𝑁 → (0...𝑛) = (0...𝑁))
21eleq2d 2687 . . 3 (𝑛 = 𝑁 → (𝑘 ∈ (0...𝑛) ↔ 𝑘 ∈ (0...𝑁)))
3 fveq2 6191 . . . 4 (𝑛 = 𝑁 → (!‘𝑛) = (!‘𝑁))
4 oveq1 6657 . . . . . 6 (𝑛 = 𝑁 → (𝑛𝑘) = (𝑁𝑘))
54fveq2d 6195 . . . . 5 (𝑛 = 𝑁 → (!‘(𝑛𝑘)) = (!‘(𝑁𝑘)))
65oveq1d 6665 . . . 4 (𝑛 = 𝑁 → ((!‘(𝑛𝑘)) · (!‘𝑘)) = ((!‘(𝑁𝑘)) · (!‘𝑘)))
73, 6oveq12d 6668 . . 3 (𝑛 = 𝑁 → ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))) = ((!‘𝑁) / ((!‘(𝑁𝑘)) · (!‘𝑘))))
82, 7ifbieq1d 4109 . 2 (𝑛 = 𝑁 → if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))), 0) = if(𝑘 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁𝑘)) · (!‘𝑘))), 0))
9 eleq1 2689 . . 3 (𝑘 = 𝐾 → (𝑘 ∈ (0...𝑁) ↔ 𝐾 ∈ (0...𝑁)))
10 oveq2 6658 . . . . . 6 (𝑘 = 𝐾 → (𝑁𝑘) = (𝑁𝐾))
1110fveq2d 6195 . . . . 5 (𝑘 = 𝐾 → (!‘(𝑁𝑘)) = (!‘(𝑁𝐾)))
12 fveq2 6191 . . . . 5 (𝑘 = 𝐾 → (!‘𝑘) = (!‘𝐾))
1311, 12oveq12d 6668 . . . 4 (𝑘 = 𝐾 → ((!‘(𝑁𝑘)) · (!‘𝑘)) = ((!‘(𝑁𝐾)) · (!‘𝐾)))
1413oveq2d 6666 . . 3 (𝑘 = 𝐾 → ((!‘𝑁) / ((!‘(𝑁𝑘)) · (!‘𝑘))) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
159, 14ifbieq1d 4109 . 2 (𝑘 = 𝐾 → if(𝑘 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁𝑘)) · (!‘𝑘))), 0) = if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))), 0))
16 df-bc 13090 . 2 C = (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))), 0))
17 ovex 6678 . . 3 ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))) ∈ V
18 c0ex 10034 . . 3 0 ∈ V
1917, 18ifex 4156 . 2 if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))), 0) ∈ V
208, 15, 16, 19ovmpt2 6796 1 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝑁C𝐾) = if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))), 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  ifcif 4086  cfv 5888  (class class class)co 6650  0cc0 9936   · cmul 9941  cmin 10266   / cdiv 10684  0cn0 11292  cz 11377  ...cfz 12326  !cfa 13060  Ccbc 13089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-mulcl 9998  ax-i2m1 10004
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-bc 13090
This theorem is referenced by:  bcval2  13092  bcval3  13093  bcneg1  31622  bccolsum  31625  fwddifnp1  32272
  Copyright terms: Public domain W3C validator