![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-evalid | Structured version Visualization version GIF version |
Description: The evaluation at a set of the identity function is that set. (General form of ndxarg 15882.) The restriction to a set 𝑉 is necessary since the argument of the function Slot 𝐴 (like that of any function) has to be a set for the evaluation to be meaningful. (Contributed by BJ, 27-Dec-2021.) |
Ref | Expression |
---|---|
bj-evalid | ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (Slot 𝐴‘( I ↾ 𝑉)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resiexg 7102 | . . 3 ⊢ (𝑉 ∈ 𝑊 → ( I ↾ 𝑉) ∈ V) | |
2 | bj-evalval 33027 | . . 3 ⊢ (( I ↾ 𝑉) ∈ V → (Slot 𝐴‘( I ↾ 𝑉)) = (( I ↾ 𝑉)‘𝐴)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝑉 ∈ 𝑊 → (Slot 𝐴‘( I ↾ 𝑉)) = (( I ↾ 𝑉)‘𝐴)) |
4 | fvresi 6439 | . 2 ⊢ (𝐴 ∈ 𝑉 → (( I ↾ 𝑉)‘𝐴) = 𝐴) | |
5 | 3, 4 | sylan9eq 2676 | 1 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (Slot 𝐴‘( I ↾ 𝑉)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 Vcvv 3200 I cid 5023 ↾ cres 5116 ‘cfv 5888 Slot cslot 15856 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-res 5126 df-iota 5851 df-fun 5890 df-fv 5896 df-slot 15861 |
This theorem is referenced by: bj-ndxarg 33029 bj-evalidval 33031 |
Copyright terms: Public domain | W3C validator |