Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-inftyexpiinj Structured version   Visualization version   GIF version

Theorem bj-inftyexpiinj 33096
Description: Injectivity of the parameterization inftyexpi. Remark: a more conceptual proof would use bj-inftyexpiinv 33095 and the fact that a function with a retraction is injective. (Contributed by BJ, 22-Jun-2019.)
Assertion
Ref Expression
bj-inftyexpiinj ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → (𝐴 = 𝐵 ↔ (inftyexpi ‘𝐴) = (inftyexpi ‘𝐵)))

Proof of Theorem bj-inftyexpiinj
StepHypRef Expression
1 fveq2 6191 . 2 (𝐴 = 𝐵 → (inftyexpi ‘𝐴) = (inftyexpi ‘𝐵))
2 fveq2 6191 . . 3 ((inftyexpi ‘𝐴) = (inftyexpi ‘𝐵) → (1st ‘(inftyexpi ‘𝐴)) = (1st ‘(inftyexpi ‘𝐵)))
3 bj-inftyexpiinv 33095 . . . . . . 7 (𝐴 ∈ (-π(,]π) → (1st ‘(inftyexpi ‘𝐴)) = 𝐴)
43adantr 481 . . . . . 6 ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → (1st ‘(inftyexpi ‘𝐴)) = 𝐴)
54eqeq1d 2624 . . . . 5 ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → ((1st ‘(inftyexpi ‘𝐴)) = (1st ‘(inftyexpi ‘𝐵)) ↔ 𝐴 = (1st ‘(inftyexpi ‘𝐵))))
65biimpd 219 . . . 4 ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → ((1st ‘(inftyexpi ‘𝐴)) = (1st ‘(inftyexpi ‘𝐵)) → 𝐴 = (1st ‘(inftyexpi ‘𝐵))))
7 bj-inftyexpiinv 33095 . . . . . 6 (𝐵 ∈ (-π(,]π) → (1st ‘(inftyexpi ‘𝐵)) = 𝐵)
87adantl 482 . . . . 5 ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → (1st ‘(inftyexpi ‘𝐵)) = 𝐵)
98eqeq2d 2632 . . . 4 ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → (𝐴 = (1st ‘(inftyexpi ‘𝐵)) ↔ 𝐴 = 𝐵))
106, 9sylibd 229 . . 3 ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → ((1st ‘(inftyexpi ‘𝐴)) = (1st ‘(inftyexpi ‘𝐵)) → 𝐴 = 𝐵))
112, 10syl5 34 . 2 ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → ((inftyexpi ‘𝐴) = (inftyexpi ‘𝐵) → 𝐴 = 𝐵))
121, 11impbid2 216 1 ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → (𝐴 = 𝐵 ↔ (inftyexpi ‘𝐴) = (inftyexpi ‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  cfv 5888  (class class class)co 6650  1st c1st 7166  -cneg 10267  (,]cioc 12176  πcpi 14797  inftyexpi cinftyexpi 33093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fv 5896  df-1st 7168  df-bj-inftyexpi 33094
This theorem is referenced by:  bj-pinftynminfty  33114
  Copyright terms: Public domain W3C validator