Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-inftyexpiinj Structured version   Visualization version   Unicode version

Theorem bj-inftyexpiinj 33096
Description: Injectivity of the parameterization inftyexpi. Remark: a more conceptual proof would use bj-inftyexpiinv 33095 and the fact that a function with a retraction is injective. (Contributed by BJ, 22-Jun-2019.)
Assertion
Ref Expression
bj-inftyexpiinj  |-  ( ( A  e.  ( -u pi (,] pi )  /\  B  e.  ( -u pi (,] pi ) )  -> 
( A  =  B  <-> 
(inftyexpi  `  A )  =  (inftyexpi  `  B ) ) )

Proof of Theorem bj-inftyexpiinj
StepHypRef Expression
1 fveq2 6191 . 2  |-  ( A  =  B  ->  (inftyexpi  `  A )  =  (inftyexpi  `  B ) )
2 fveq2 6191 . . 3  |-  ( (inftyexpi  `  A )  =  (inftyexpi  `  B )  ->  ( 1st `  (inftyexpi  `  A ) )  =  ( 1st `  (inftyexpi  `  B ) ) )
3 bj-inftyexpiinv 33095 . . . . . . 7  |-  ( A  e.  ( -u pi (,] pi )  ->  ( 1st `  (inftyexpi  `  A ) )  =  A )
43adantr 481 . . . . . 6  |-  ( ( A  e.  ( -u pi (,] pi )  /\  B  e.  ( -u pi (,] pi ) )  -> 
( 1st `  (inftyexpi  `  A ) )  =  A )
54eqeq1d 2624 . . . . 5  |-  ( ( A  e.  ( -u pi (,] pi )  /\  B  e.  ( -u pi (,] pi ) )  -> 
( ( 1st `  (inftyexpi  `  A ) )  =  ( 1st `  (inftyexpi  `  B ) )  <->  A  =  ( 1st `  (inftyexpi  `  B
) ) ) )
65biimpd 219 . . . 4  |-  ( ( A  e.  ( -u pi (,] pi )  /\  B  e.  ( -u pi (,] pi ) )  -> 
( ( 1st `  (inftyexpi  `  A ) )  =  ( 1st `  (inftyexpi  `  B ) )  ->  A  =  ( 1st `  (inftyexpi  `  B ) ) ) )
7 bj-inftyexpiinv 33095 . . . . . 6  |-  ( B  e.  ( -u pi (,] pi )  ->  ( 1st `  (inftyexpi  `  B ) )  =  B )
87adantl 482 . . . . 5  |-  ( ( A  e.  ( -u pi (,] pi )  /\  B  e.  ( -u pi (,] pi ) )  -> 
( 1st `  (inftyexpi  `  B ) )  =  B )
98eqeq2d 2632 . . . 4  |-  ( ( A  e.  ( -u pi (,] pi )  /\  B  e.  ( -u pi (,] pi ) )  -> 
( A  =  ( 1st `  (inftyexpi  `  B
) )  <->  A  =  B ) )
106, 9sylibd 229 . . 3  |-  ( ( A  e.  ( -u pi (,] pi )  /\  B  e.  ( -u pi (,] pi ) )  -> 
( ( 1st `  (inftyexpi  `  A ) )  =  ( 1st `  (inftyexpi  `  B ) )  ->  A  =  B )
)
112, 10syl5 34 . 2  |-  ( ( A  e.  ( -u pi (,] pi )  /\  B  e.  ( -u pi (,] pi ) )  -> 
( (inftyexpi  `  A )  =  (inftyexpi  `  B )  ->  A  =  B ) )
121, 11impbid2 216 1  |-  ( ( A  e.  ( -u pi (,] pi )  /\  B  e.  ( -u pi (,] pi ) )  -> 
( A  =  B  <-> 
(inftyexpi  `  A )  =  (inftyexpi  `  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   ` cfv 5888  (class class class)co 6650   1stc1st 7166   -ucneg 10267   (,]cioc 12176   picpi 14797  inftyexpi cinftyexpi 33093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fv 5896  df-1st 7168  df-bj-inftyexpi 33094
This theorem is referenced by:  bj-pinftynminfty  33114
  Copyright terms: Public domain W3C validator