Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-projun Structured version   Visualization version   GIF version

Theorem bj-projun 32982
Description: The class projection on a given component preserves unions. (Contributed by BJ, 6-Apr-2019.)
Assertion
Ref Expression
bj-projun (𝐴 Proj (𝐵𝐶)) = ((𝐴 Proj 𝐵) ∪ (𝐴 Proj 𝐶))

Proof of Theorem bj-projun
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-bj-proj 32979 . . . . 5 (𝐴 Proj 𝐵) = {𝑥 ∣ {𝑥} ∈ (𝐵 “ {𝐴})}
21abeq2i 2735 . . . 4 (𝑥 ∈ (𝐴 Proj 𝐵) ↔ {𝑥} ∈ (𝐵 “ {𝐴}))
3 df-bj-proj 32979 . . . . 5 (𝐴 Proj 𝐶) = {𝑥 ∣ {𝑥} ∈ (𝐶 “ {𝐴})}
43abeq2i 2735 . . . 4 (𝑥 ∈ (𝐴 Proj 𝐶) ↔ {𝑥} ∈ (𝐶 “ {𝐴}))
52, 4orbi12i 543 . . 3 ((𝑥 ∈ (𝐴 Proj 𝐵) ∨ 𝑥 ∈ (𝐴 Proj 𝐶)) ↔ ({𝑥} ∈ (𝐵 “ {𝐴}) ∨ {𝑥} ∈ (𝐶 “ {𝐴})))
6 elun 3753 . . 3 (𝑥 ∈ ((𝐴 Proj 𝐵) ∪ (𝐴 Proj 𝐶)) ↔ (𝑥 ∈ (𝐴 Proj 𝐵) ∨ 𝑥 ∈ (𝐴 Proj 𝐶)))
7 df-bj-proj 32979 . . . . 5 (𝐴 Proj (𝐵𝐶)) = {𝑥 ∣ {𝑥} ∈ ((𝐵𝐶) “ {𝐴})}
87abeq2i 2735 . . . 4 (𝑥 ∈ (𝐴 Proj (𝐵𝐶)) ↔ {𝑥} ∈ ((𝐵𝐶) “ {𝐴}))
9 imaundir 5546 . . . . 5 ((𝐵𝐶) “ {𝐴}) = ((𝐵 “ {𝐴}) ∪ (𝐶 “ {𝐴}))
109eleq2i 2693 . . . 4 ({𝑥} ∈ ((𝐵𝐶) “ {𝐴}) ↔ {𝑥} ∈ ((𝐵 “ {𝐴}) ∪ (𝐶 “ {𝐴})))
11 elun 3753 . . . 4 ({𝑥} ∈ ((𝐵 “ {𝐴}) ∪ (𝐶 “ {𝐴})) ↔ ({𝑥} ∈ (𝐵 “ {𝐴}) ∨ {𝑥} ∈ (𝐶 “ {𝐴})))
128, 10, 113bitri 286 . . 3 (𝑥 ∈ (𝐴 Proj (𝐵𝐶)) ↔ ({𝑥} ∈ (𝐵 “ {𝐴}) ∨ {𝑥} ∈ (𝐶 “ {𝐴})))
135, 6, 123bitr4ri 293 . 2 (𝑥 ∈ (𝐴 Proj (𝐵𝐶)) ↔ 𝑥 ∈ ((𝐴 Proj 𝐵) ∪ (𝐴 Proj 𝐶)))
1413eqriv 2619 1 (𝐴 Proj (𝐵𝐶)) = ((𝐴 Proj 𝐵) ∪ (𝐴 Proj 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wo 383   = wceq 1483  wcel 1990  cun 3572  {csn 4177  cima 5117   Proj bj-cproj 32978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-bj-proj 32979
This theorem is referenced by:  bj-pr1un  32991  bj-pr2un  33005
  Copyright terms: Public domain W3C validator