![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-restsnid | Structured version Visualization version GIF version |
Description: The elementwise intersection on the singleton on a class by that class is the singleton on that class. Special case of bj-restsn 33035 and bj-restsnss 33036. (Contributed by BJ, 27-Apr-2021.) |
Ref | Expression |
---|---|
bj-restsnid | ⊢ ({𝐴} ↾t 𝐴) = {𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3624 | . . 3 ⊢ 𝐴 ⊆ 𝐴 | |
2 | bj-restsnss 33036 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐴 ⊆ 𝐴) → ({𝐴} ↾t 𝐴) = {𝐴}) | |
3 | 1, 2 | mpan2 707 | . 2 ⊢ (𝐴 ∈ V → ({𝐴} ↾t 𝐴) = {𝐴}) |
4 | df-rest 16083 | . . . . 5 ⊢ ↾t = (𝑥 ∈ V, 𝑦 ∈ V ↦ ran (𝑧 ∈ 𝑥 ↦ (𝑧 ∩ 𝑦))) | |
5 | 4 | reldmmpt2 6771 | . . . 4 ⊢ Rel dom ↾t |
6 | 5 | ovprc2 6685 | . . 3 ⊢ (¬ 𝐴 ∈ V → ({𝐴} ↾t 𝐴) = ∅) |
7 | snprc 4253 | . . . 4 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
8 | 7 | biimpi 206 | . . 3 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
9 | 6, 8 | eqtr4d 2659 | . 2 ⊢ (¬ 𝐴 ∈ V → ({𝐴} ↾t 𝐴) = {𝐴}) |
10 | 3, 9 | pm2.61i 176 | 1 ⊢ ({𝐴} ↾t 𝐴) = {𝐴} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ∩ cin 3573 ⊆ wss 3574 ∅c0 3915 {csn 4177 ↦ cmpt 4729 ran crn 5115 (class class class)co 6650 ↾t crest 16081 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-rest 16083 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |