Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-snmoore Structured version   Visualization version   Unicode version

Theorem bj-snmoore 33068
Description: A singleton is a Moore collection. (Contributed by BJ, 9-Dec-2021.)
Assertion
Ref Expression
bj-snmoore  |-  ( A  e.  _V  <->  { A }  e. Moore_ )

Proof of Theorem bj-snmoore
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 snex 4908 . . . 4  |-  { A }  e.  _V
21a1i 11 . . 3  |-  ( A  e.  _V  ->  { A }  e.  _V )
3 unisng 4452 . . . 4  |-  ( A  e.  _V  ->  U. { A }  =  A
)
4 snidg 4206 . . . 4  |-  ( A  e.  _V  ->  A  e.  { A } )
53, 4eqeltrd 2701 . . 3  |-  ( A  e.  _V  ->  U. { A }  e.  { A } )
6 df-ne 2795 . . . . . . . 8  |-  ( x  =/=  (/)  <->  -.  x  =  (/) )
7 sssn 4358 . . . . . . . 8  |-  ( x 
C_  { A }  <->  ( x  =  (/)  \/  x  =  { A } ) )
8 biorf 420 . . . . . . . . 9  |-  ( -.  x  =  (/)  ->  (
x  =  { A } 
<->  ( x  =  (/)  \/  x  =  { A } ) ) )
98biimpar 502 . . . . . . . 8  |-  ( ( -.  x  =  (/)  /\  ( x  =  (/)  \/  x  =  { A } ) )  ->  x  =  { A } )
106, 7, 9syl2anb 496 . . . . . . 7  |-  ( ( x  =/=  (/)  /\  x  C_ 
{ A } )  ->  x  =  { A } )
11 inteq 4478 . . . . . . . . 9  |-  ( x  =  { A }  ->  |^| x  =  |^| { A } )
12 intsng 4512 . . . . . . . . 9  |-  ( A  e.  _V  ->  |^| { A }  =  A )
13 eqtr 2641 . . . . . . . . . 10  |-  ( (
|^| x  =  |^| { A }  /\  |^| { A }  =  A )  ->  |^| x  =  A )
1413ex 450 . . . . . . . . 9  |-  ( |^| x  =  |^| { A }  ->  ( |^| { A }  =  A  ->  |^| x  =  A ) )
1511, 12, 14syl2im 40 . . . . . . . 8  |-  ( x  =  { A }  ->  ( A  e.  _V  ->  |^| x  =  A ) )
16 intex 4820 . . . . . . . . . 10  |-  ( x  =/=  (/)  <->  |^| x  e.  _V )
17 elsng 4191 . . . . . . . . . 10  |-  ( |^| x  e.  _V  ->  (
|^| x  e.  { A }  <->  |^| x  =  A ) )
1816, 17sylbi 207 . . . . . . . . 9  |-  ( x  =/=  (/)  ->  ( |^| x  e.  { A } 
<-> 
|^| x  =  A ) )
1918biimprd 238 . . . . . . . 8  |-  ( x  =/=  (/)  ->  ( |^| x  =  A  ->  |^| x  e.  { A } ) )
2015, 19sylan9r 690 . . . . . . 7  |-  ( ( x  =/=  (/)  /\  x  =  { A } )  ->  ( A  e. 
_V  ->  |^| x  e.  { A } ) )
2110, 20syldan 487 . . . . . 6  |-  ( ( x  =/=  (/)  /\  x  C_ 
{ A } )  ->  ( A  e. 
_V  ->  |^| x  e.  { A } ) )
2221ex 450 . . . . 5  |-  ( x  =/=  (/)  ->  ( x  C_ 
{ A }  ->  ( A  e.  _V  ->  |^| x  e.  { A } ) ) )
2322com13 88 . . . 4  |-  ( A  e.  _V  ->  (
x  C_  { A }  ->  ( x  =/=  (/)  ->  |^| x  e.  { A } ) ) )
2423imp31 448 . . 3  |-  ( ( ( A  e.  _V  /\  x  C_  { A } )  /\  x  =/=  (/) )  ->  |^| x  e.  { A } )
252, 5, 24bj-ismooredr2 33065 . 2  |-  ( A  e.  _V  ->  { A }  e. Moore_ )
26 snprc 4253 . . . . 5  |-  ( -.  A  e.  _V  <->  { A }  =  (/) )
2726biimpi 206 . . . 4  |-  ( -.  A  e.  _V  ->  { A }  =  (/) )
28 bj-0nmoore 33067 . . . . 5  |-  -.  (/)  e. Moore_
2928a1i 11 . . . 4  |-  ( -.  A  e.  _V  ->  -.  (/)  e. Moore_ )
3027, 29eqneltrd 2720 . . 3  |-  ( -.  A  e.  _V  ->  -. 
{ A }  e. Moore_ )
3130con4i 113 . 2  |-  ( { A }  e. Moore_  ->  A  e.  _V )
3225, 31impbii 199 1  |-  ( A  e.  _V  <->  { A }  e. Moore_ )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200    C_ wss 3574   (/)c0 3915   {csn 4177   U.cuni 4436   |^|cint 4475  Moore_cmoore 33057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-pw 4160  df-sn 4178  df-pr 4180  df-uni 4437  df-int 4476  df-bj-moore 33058
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator