| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-snmoore | Structured version Visualization version Unicode version | ||
| Description: A singleton is a Moore collection. (Contributed by BJ, 9-Dec-2021.) |
| Ref | Expression |
|---|---|
| bj-snmoore |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snex 4908 |
. . . 4
| |
| 2 | 1 | a1i 11 |
. . 3
|
| 3 | unisng 4452 |
. . . 4
| |
| 4 | snidg 4206 |
. . . 4
| |
| 5 | 3, 4 | eqeltrd 2701 |
. . 3
|
| 6 | df-ne 2795 |
. . . . . . . 8
| |
| 7 | sssn 4358 |
. . . . . . . 8
| |
| 8 | biorf 420 |
. . . . . . . . 9
| |
| 9 | 8 | biimpar 502 |
. . . . . . . 8
|
| 10 | 6, 7, 9 | syl2anb 496 |
. . . . . . 7
|
| 11 | inteq 4478 |
. . . . . . . . 9
| |
| 12 | intsng 4512 |
. . . . . . . . 9
| |
| 13 | eqtr 2641 |
. . . . . . . . . 10
| |
| 14 | 13 | ex 450 |
. . . . . . . . 9
|
| 15 | 11, 12, 14 | syl2im 40 |
. . . . . . . 8
|
| 16 | intex 4820 |
. . . . . . . . . 10
| |
| 17 | elsng 4191 |
. . . . . . . . . 10
| |
| 18 | 16, 17 | sylbi 207 |
. . . . . . . . 9
|
| 19 | 18 | biimprd 238 |
. . . . . . . 8
|
| 20 | 15, 19 | sylan9r 690 |
. . . . . . 7
|
| 21 | 10, 20 | syldan 487 |
. . . . . 6
|
| 22 | 21 | ex 450 |
. . . . 5
|
| 23 | 22 | com13 88 |
. . . 4
|
| 24 | 23 | imp31 448 |
. . 3
|
| 25 | 2, 5, 24 | bj-ismooredr2 33065 |
. 2
|
| 26 | snprc 4253 |
. . . . 5
| |
| 27 | 26 | biimpi 206 |
. . . 4
|
| 28 | bj-0nmoore 33067 |
. . . . 5
| |
| 29 | 28 | a1i 11 |
. . . 4
|
| 30 | 27, 29 | eqneltrd 2720 |
. . 3
|
| 31 | 30 | con4i 113 |
. 2
|
| 32 | 25, 31 | impbii 199 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-pw 4160 df-sn 4178 df-pr 4180 df-uni 4437 df-int 4476 df-bj-moore 33058 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |