![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1294 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1294.1 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
bnj1294.2 | ⊢ (𝜑 → 𝑥 ∈ 𝐴) |
Ref | Expression |
---|---|
bnj1294 | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1294.2 | . 2 ⊢ (𝜑 → 𝑥 ∈ 𝐴) | |
2 | bnj1294.1 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | |
3 | df-ral 2917 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | |
4 | sp 2053 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜓) → (𝑥 ∈ 𝐴 → 𝜓)) | |
5 | 4 | impcom 446 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) → 𝜓) |
6 | 3, 5 | sylan2b 492 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝜓) → 𝜓) |
7 | 1, 2, 6 | syl2anc 693 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1481 ∈ wcel 1990 ∀wral 2912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-12 2047 |
This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-ral 2917 |
This theorem is referenced by: bnj1379 30901 bnj1121 31053 bnj1279 31086 bnj1286 31087 bnj1296 31089 bnj1421 31110 bnj1450 31118 bnj1489 31124 bnj1501 31135 bnj1523 31139 |
Copyright terms: Public domain | W3C validator |