Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1421 Structured version   Visualization version   GIF version

Theorem bnj1421 31110
Description: Technical lemma for bnj60 31130. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1421.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1421.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1421.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1421.4 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
bnj1421.5 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
bnj1421.6 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
bnj1421.7 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
bnj1421.8 (𝜏′[𝑦 / 𝑥]𝜏)
bnj1421.9 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
bnj1421.10 𝑃 = 𝐻
bnj1421.11 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1421.12 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
bnj1421.13 (𝜒 → Fun 𝑃)
bnj1421.14 (𝜒 → dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
bnj1421.15 (𝜒 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅))
Assertion
Ref Expression
bnj1421 (𝜒 → Fun 𝑄)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑓,𝑑)   𝜒(𝑥,𝑦,𝑓,𝑑)   𝜏(𝑥,𝑦,𝑓,𝑑)   𝐴(𝑦,𝑓,𝑑)   𝐵(𝑥,𝑦,𝑓,𝑑)   𝐶(𝑥,𝑦,𝑓,𝑑)   𝐷(𝑥,𝑦,𝑓,𝑑)   𝑃(𝑥,𝑦,𝑓,𝑑)   𝑄(𝑥,𝑦,𝑓,𝑑)   𝑅(𝑦,𝑓,𝑑)   𝐺(𝑥,𝑦,𝑓,𝑑)   𝐻(𝑥,𝑦,𝑓,𝑑)   𝑌(𝑥,𝑦,𝑓,𝑑)   𝑍(𝑥,𝑦,𝑓,𝑑)   𝜏′(𝑥,𝑦,𝑓,𝑑)

Proof of Theorem bnj1421
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bnj1421.13 . . . 4 (𝜒 → Fun 𝑃)
2 vex 3203 . . . . 5 𝑥 ∈ V
3 fvex 6201 . . . . 5 (𝐺𝑍) ∈ V
42, 3funsn 5939 . . . 4 Fun {⟨𝑥, (𝐺𝑍)⟩}
51, 4jctir 561 . . 3 (𝜒 → (Fun 𝑃 ∧ Fun {⟨𝑥, (𝐺𝑍)⟩}))
6 bnj1421.15 . . . . 5 (𝜒 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅))
73dmsnop 5609 . . . . . 6 dom {⟨𝑥, (𝐺𝑍)⟩} = {𝑥}
87a1i 11 . . . . 5 (𝜒 → dom {⟨𝑥, (𝐺𝑍)⟩} = {𝑥})
96, 8ineq12d 3815 . . . 4 (𝜒 → (dom 𝑃 ∩ dom {⟨𝑥, (𝐺𝑍)⟩}) = ( trCl(𝑥, 𝐴, 𝑅) ∩ {𝑥}))
10 bnj1421.7 . . . . . . 7 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
11 bnj1421.6 . . . . . . . 8 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
1211simplbi 476 . . . . . . 7 (𝜓𝑅 FrSe 𝐴)
1310, 12bnj835 30829 . . . . . 6 (𝜒𝑅 FrSe 𝐴)
14 biid 251 . . . . . . . 8 (𝑅 FrSe 𝐴𝑅 FrSe 𝐴)
15 biid 251 . . . . . . . 8 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅) ↔ ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅))
16 biid 251 . . . . . . . 8 (∀𝑧𝐴 (𝑧𝑅𝑥[𝑧 / 𝑥] ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅)) ↔ ∀𝑧𝐴 (𝑧𝑅𝑥[𝑧 / 𝑥] ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅)))
17 biid 251 . . . . . . . 8 ((𝑅 FrSe 𝐴𝑥𝐴 ∧ ∀𝑧𝐴 (𝑧𝑅𝑥[𝑧 / 𝑥] ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅))) ↔ (𝑅 FrSe 𝐴𝑥𝐴 ∧ ∀𝑧𝐴 (𝑧𝑅𝑥[𝑧 / 𝑥] ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅))))
18 eqid 2622 . . . . . . . 8 ( pred(𝑥, 𝐴, 𝑅) ∪ 𝑧 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑧, 𝐴, 𝑅)) = ( pred(𝑥, 𝐴, 𝑅) ∪ 𝑧 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑧, 𝐴, 𝑅))
1914, 15, 16, 17, 18bnj1417 31109 . . . . . . 7 (𝑅 FrSe 𝐴 → ∀𝑥𝐴 ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅))
20 disjsn 4246 . . . . . . . 8 (( trCl(𝑥, 𝐴, 𝑅) ∩ {𝑥}) = ∅ ↔ ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅))
2120ralbii 2980 . . . . . . 7 (∀𝑥𝐴 ( trCl(𝑥, 𝐴, 𝑅) ∩ {𝑥}) = ∅ ↔ ∀𝑥𝐴 ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅))
2219, 21sylibr 224 . . . . . 6 (𝑅 FrSe 𝐴 → ∀𝑥𝐴 ( trCl(𝑥, 𝐴, 𝑅) ∩ {𝑥}) = ∅)
2313, 22syl 17 . . . . 5 (𝜒 → ∀𝑥𝐴 ( trCl(𝑥, 𝐴, 𝑅) ∩ {𝑥}) = ∅)
24 bnj1421.5 . . . . . 6 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
2524, 10bnj1212 30870 . . . . 5 (𝜒𝑥𝐴)
2623, 25bnj1294 30888 . . . 4 (𝜒 → ( trCl(𝑥, 𝐴, 𝑅) ∩ {𝑥}) = ∅)
279, 26eqtrd 2656 . . 3 (𝜒 → (dom 𝑃 ∩ dom {⟨𝑥, (𝐺𝑍)⟩}) = ∅)
28 funun 5932 . . 3 (((Fun 𝑃 ∧ Fun {⟨𝑥, (𝐺𝑍)⟩}) ∧ (dom 𝑃 ∩ dom {⟨𝑥, (𝐺𝑍)⟩}) = ∅) → Fun (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩}))
295, 27, 28syl2anc 693 . 2 (𝜒 → Fun (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩}))
30 bnj1421.12 . . 3 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
3130funeqi 5909 . 2 (Fun 𝑄 ↔ Fun (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩}))
3229, 31sylibr 224 1 (𝜒 → Fun 𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  {cab 2608  wne 2794  wral 2912  wrex 2913  {crab 2916  [wsbc 3435  cun 3572  cin 3573  wss 3574  c0 3915  {csn 4177  cop 4183   cuni 4436   ciun 4520   class class class wbr 4653  dom cdm 5114  cres 5116  Fun wfun 5882   Fn wfn 5883  cfv 5888   predc-bnj14 30754   FrSe w-bnj15 30758   trClc-bnj18 30760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-bnj17 30753  df-bnj14 30755  df-bnj13 30757  df-bnj15 30759  df-bnj18 30761  df-bnj19 30763
This theorem is referenced by:  bnj1312  31126
  Copyright terms: Public domain W3C validator