Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1296 Structured version   Visualization version   GIF version

Theorem bnj1296 31089
Description: Technical lemma for bnj60 31130. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1296.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1296.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1296.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1296.4 𝐷 = (dom 𝑔 ∩ dom )
bnj1296.5 𝐸 = {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)}
bnj1296.6 (𝜑 ↔ (𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)))
bnj1296.7 (𝜓 ↔ (𝜑𝑥𝐸 ∧ ∀𝑦𝐸 ¬ 𝑦𝑅𝑥))
bnj1296.18 (𝜓 → (𝑔 ↾ pred(𝑥, 𝐴, 𝑅)) = ( ↾ pred(𝑥, 𝐴, 𝑅)))
bnj1296.9 𝑍 = ⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1296.10 𝐾 = {𝑔 ∣ ∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺𝑍))}
bnj1296.11 𝑊 = ⟨𝑥, ( ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1296.12 𝐿 = { ∣ ∃𝑑𝐵 ( Fn 𝑑 ∧ ∀𝑥𝑑 (𝑥) = (𝐺𝑊))}
Assertion
Ref Expression
bnj1296 (𝜓 → (𝑔𝑥) = (𝑥))
Distinct variable groups:   𝐵,𝑓,𝑔   𝐵,,𝑓   𝑥,𝐷   𝐺,𝑑,𝑓,𝑔   ,𝐺,𝑑   𝑊,𝑑,𝑓   𝑔,𝑌   ,𝑌   𝑍,𝑑,𝑓   𝑥,𝑑,𝑓,𝑔   𝑥,
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓,𝑔,,𝑑)   𝜓(𝑥,𝑦,𝑓,𝑔,,𝑑)   𝐴(𝑥,𝑦,𝑓,𝑔,,𝑑)   𝐵(𝑥,𝑦,𝑑)   𝐶(𝑥,𝑦,𝑓,𝑔,,𝑑)   𝐷(𝑦,𝑓,𝑔,,𝑑)   𝑅(𝑥,𝑦,𝑓,𝑔,,𝑑)   𝐸(𝑥,𝑦,𝑓,𝑔,,𝑑)   𝐺(𝑥,𝑦)   𝐾(𝑥,𝑦,𝑓,𝑔,,𝑑)   𝐿(𝑥,𝑦,𝑓,𝑔,,𝑑)   𝑊(𝑥,𝑦,𝑔,)   𝑌(𝑥,𝑦,𝑓,𝑑)   𝑍(𝑥,𝑦,𝑔,)

Proof of Theorem bnj1296
StepHypRef Expression
1 bnj1296.18 . . . . 5 (𝜓 → (𝑔 ↾ pred(𝑥, 𝐴, 𝑅)) = ( ↾ pred(𝑥, 𝐴, 𝑅)))
21opeq2d 4409 . . . 4 (𝜓 → ⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩ = ⟨𝑥, ( ↾ pred(𝑥, 𝐴, 𝑅))⟩)
3 bnj1296.9 . . . 4 𝑍 = ⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩
4 bnj1296.11 . . . 4 𝑊 = ⟨𝑥, ( ↾ pred(𝑥, 𝐴, 𝑅))⟩
52, 3, 43eqtr4g 2681 . . 3 (𝜓𝑍 = 𝑊)
65fveq2d 6195 . 2 (𝜓 → (𝐺𝑍) = (𝐺𝑊))
7 bnj1296.7 . . . 4 (𝜓 ↔ (𝜑𝑥𝐸 ∧ ∀𝑦𝐸 ¬ 𝑦𝑅𝑥))
8 bnj1296.6 . . . . 5 (𝜑 ↔ (𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)))
9 bnj1296.10 . . . . . . . . . . 11 𝐾 = {𝑔 ∣ ∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺𝑍))}
109bnj1436 30910 . . . . . . . . . 10 (𝑔𝐾 → ∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺𝑍)))
11 fndm 5990 . . . . . . . . . . 11 (𝑔 Fn 𝑑 → dom 𝑔 = 𝑑)
1211anim1i 592 . . . . . . . . . 10 ((𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺𝑍)) → (dom 𝑔 = 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺𝑍)))
1310, 12bnj31 30785 . . . . . . . . 9 (𝑔𝐾 → ∃𝑑𝐵 (dom 𝑔 = 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺𝑍)))
14 raleq 3138 . . . . . . . . . . 11 (dom 𝑔 = 𝑑 → (∀𝑥 ∈ dom 𝑔(𝑔𝑥) = (𝐺𝑍) ↔ ∀𝑥𝑑 (𝑔𝑥) = (𝐺𝑍)))
1514pm5.32i 669 . . . . . . . . . 10 ((dom 𝑔 = 𝑑 ∧ ∀𝑥 ∈ dom 𝑔(𝑔𝑥) = (𝐺𝑍)) ↔ (dom 𝑔 = 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺𝑍)))
1615rexbii 3041 . . . . . . . . 9 (∃𝑑𝐵 (dom 𝑔 = 𝑑 ∧ ∀𝑥 ∈ dom 𝑔(𝑔𝑥) = (𝐺𝑍)) ↔ ∃𝑑𝐵 (dom 𝑔 = 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺𝑍)))
1713, 16sylibr 224 . . . . . . . 8 (𝑔𝐾 → ∃𝑑𝐵 (dom 𝑔 = 𝑑 ∧ ∀𝑥 ∈ dom 𝑔(𝑔𝑥) = (𝐺𝑍)))
18 simpr 477 . . . . . . . 8 ((dom 𝑔 = 𝑑 ∧ ∀𝑥 ∈ dom 𝑔(𝑔𝑥) = (𝐺𝑍)) → ∀𝑥 ∈ dom 𝑔(𝑔𝑥) = (𝐺𝑍))
1917, 18bnj31 30785 . . . . . . 7 (𝑔𝐾 → ∃𝑑𝐵𝑥 ∈ dom 𝑔(𝑔𝑥) = (𝐺𝑍))
2019bnj1265 30883 . . . . . 6 (𝑔𝐾 → ∀𝑥 ∈ dom 𝑔(𝑔𝑥) = (𝐺𝑍))
21 bnj1296.2 . . . . . . 7 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
22 bnj1296.3 . . . . . . 7 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
2321, 22, 3, 9bnj1234 31081 . . . . . 6 𝐶 = 𝐾
2420, 23eleq2s 2719 . . . . 5 (𝑔𝐶 → ∀𝑥 ∈ dom 𝑔(𝑔𝑥) = (𝐺𝑍))
258, 24bnj770 30833 . . . 4 (𝜑 → ∀𝑥 ∈ dom 𝑔(𝑔𝑥) = (𝐺𝑍))
267, 25bnj835 30829 . . 3 (𝜓 → ∀𝑥 ∈ dom 𝑔(𝑔𝑥) = (𝐺𝑍))
27 bnj1296.4 . . . . 5 𝐷 = (dom 𝑔 ∩ dom )
2827bnj1292 30886 . . . 4 𝐷 ⊆ dom 𝑔
29 bnj1296.5 . . . . 5 𝐸 = {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)}
3029, 7bnj1212 30870 . . . 4 (𝜓𝑥𝐷)
3128, 30bnj1213 30869 . . 3 (𝜓𝑥 ∈ dom 𝑔)
3226, 31bnj1294 30888 . 2 (𝜓 → (𝑔𝑥) = (𝐺𝑍))
33 bnj1296.12 . . . . . . . . . . 11 𝐿 = { ∣ ∃𝑑𝐵 ( Fn 𝑑 ∧ ∀𝑥𝑑 (𝑥) = (𝐺𝑊))}
3433bnj1436 30910 . . . . . . . . . 10 (𝐿 → ∃𝑑𝐵 ( Fn 𝑑 ∧ ∀𝑥𝑑 (𝑥) = (𝐺𝑊)))
35 fndm 5990 . . . . . . . . . . 11 ( Fn 𝑑 → dom = 𝑑)
3635anim1i 592 . . . . . . . . . 10 (( Fn 𝑑 ∧ ∀𝑥𝑑 (𝑥) = (𝐺𝑊)) → (dom = 𝑑 ∧ ∀𝑥𝑑 (𝑥) = (𝐺𝑊)))
3734, 36bnj31 30785 . . . . . . . . 9 (𝐿 → ∃𝑑𝐵 (dom = 𝑑 ∧ ∀𝑥𝑑 (𝑥) = (𝐺𝑊)))
38 raleq 3138 . . . . . . . . . . 11 (dom = 𝑑 → (∀𝑥 ∈ dom (𝑥) = (𝐺𝑊) ↔ ∀𝑥𝑑 (𝑥) = (𝐺𝑊)))
3938pm5.32i 669 . . . . . . . . . 10 ((dom = 𝑑 ∧ ∀𝑥 ∈ dom (𝑥) = (𝐺𝑊)) ↔ (dom = 𝑑 ∧ ∀𝑥𝑑 (𝑥) = (𝐺𝑊)))
4039rexbii 3041 . . . . . . . . 9 (∃𝑑𝐵 (dom = 𝑑 ∧ ∀𝑥 ∈ dom (𝑥) = (𝐺𝑊)) ↔ ∃𝑑𝐵 (dom = 𝑑 ∧ ∀𝑥𝑑 (𝑥) = (𝐺𝑊)))
4137, 40sylibr 224 . . . . . . . 8 (𝐿 → ∃𝑑𝐵 (dom = 𝑑 ∧ ∀𝑥 ∈ dom (𝑥) = (𝐺𝑊)))
42 simpr 477 . . . . . . . 8 ((dom = 𝑑 ∧ ∀𝑥 ∈ dom (𝑥) = (𝐺𝑊)) → ∀𝑥 ∈ dom (𝑥) = (𝐺𝑊))
4341, 42bnj31 30785 . . . . . . 7 (𝐿 → ∃𝑑𝐵𝑥 ∈ dom (𝑥) = (𝐺𝑊))
4443bnj1265 30883 . . . . . 6 (𝐿 → ∀𝑥 ∈ dom (𝑥) = (𝐺𝑊))
4521, 22, 4, 33bnj1234 31081 . . . . . 6 𝐶 = 𝐿
4644, 45eleq2s 2719 . . . . 5 (𝐶 → ∀𝑥 ∈ dom (𝑥) = (𝐺𝑊))
478, 46bnj771 30834 . . . 4 (𝜑 → ∀𝑥 ∈ dom (𝑥) = (𝐺𝑊))
487, 47bnj835 30829 . . 3 (𝜓 → ∀𝑥 ∈ dom (𝑥) = (𝐺𝑊))
4927bnj1293 30887 . . . 4 𝐷 ⊆ dom
5049, 30bnj1213 30869 . . 3 (𝜓𝑥 ∈ dom )
5148, 50bnj1294 30888 . 2 (𝜓 → (𝑥) = (𝐺𝑊))
526, 32, 513eqtr4d 2666 1 (𝜓 → (𝑔𝑥) = (𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  {cab 2608  wne 2794  wral 2912  wrex 2913  {crab 2916  cin 3573  wss 3574  cop 4183   class class class wbr 4653  dom cdm 5114  cres 5116   Fn wfn 5883  cfv 5888  w-bnj17 30752   predc-bnj14 30754   FrSe w-bnj15 30758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-bnj17 30753
This theorem is referenced by:  bnj1311  31092
  Copyright terms: Public domain W3C validator