![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1383 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1383.1 | ⊢ (𝜑 ↔ ∀𝑓 ∈ 𝐴 Fun 𝑓) |
bnj1383.2 | ⊢ 𝐷 = (dom 𝑓 ∩ dom 𝑔) |
bnj1383.3 | ⊢ (𝜓 ↔ (𝜑 ∧ ∀𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 (𝑓 ↾ 𝐷) = (𝑔 ↾ 𝐷))) |
Ref | Expression |
---|---|
bnj1383 | ⊢ (𝜓 → Fun ∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1383.1 | . 2 ⊢ (𝜑 ↔ ∀𝑓 ∈ 𝐴 Fun 𝑓) | |
2 | bnj1383.2 | . 2 ⊢ 𝐷 = (dom 𝑓 ∩ dom 𝑔) | |
3 | bnj1383.3 | . 2 ⊢ (𝜓 ↔ (𝜑 ∧ ∀𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 (𝑓 ↾ 𝐷) = (𝑔 ↾ 𝐷))) | |
4 | biid 251 | . 2 ⊢ ((𝜓 ∧ 〈𝑥, 𝑦〉 ∈ ∪ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ ∪ 𝐴) ↔ (𝜓 ∧ 〈𝑥, 𝑦〉 ∈ ∪ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ ∪ 𝐴)) | |
5 | biid 251 | . 2 ⊢ (((𝜓 ∧ 〈𝑥, 𝑦〉 ∈ ∪ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ ∪ 𝐴) ∧ 𝑓 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝑓) ↔ ((𝜓 ∧ 〈𝑥, 𝑦〉 ∈ ∪ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ ∪ 𝐴) ∧ 𝑓 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝑓)) | |
6 | biid 251 | . 2 ⊢ ((((𝜓 ∧ 〈𝑥, 𝑦〉 ∈ ∪ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ ∪ 𝐴) ∧ 𝑓 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝑓) ∧ 𝑔 ∈ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ 𝑔) ↔ (((𝜓 ∧ 〈𝑥, 𝑦〉 ∈ ∪ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ ∪ 𝐴) ∧ 𝑓 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝑓) ∧ 𝑔 ∈ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ 𝑔)) | |
7 | 1, 2, 3, 4, 5, 6 | bnj1379 30901 | 1 ⊢ (𝜓 → Fun ∪ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ∀wral 2912 ∩ cin 3573 〈cop 4183 ∪ cuni 4436 dom cdm 5114 ↾ cres 5116 Fun wfun 5882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-res 5126 df-iota 5851 df-fun 5890 df-fv 5896 |
This theorem is referenced by: bnj1385 30903 bnj60 31130 |
Copyright terms: Public domain | W3C validator |