Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj518 Structured version   Visualization version   GIF version

Theorem bnj518 30956
Description: Technical lemma for bnj852 30991. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj518.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
bnj518.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj518.3 (𝜏 ↔ (𝜑𝜓𝑛 ∈ ω ∧ 𝑝𝑛))
Assertion
Ref Expression
bnj518 ((𝑅 FrSe 𝐴𝜏) → ∀𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V)
Distinct variable groups:   𝑓,𝑖,𝑝,𝑦   𝑖,𝑛,𝑝   𝐴,𝑖,𝑝,𝑦   𝑦,𝑅
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓,𝑖,𝑛,𝑝)   𝜓(𝑥,𝑦,𝑓,𝑖,𝑛,𝑝)   𝜏(𝑥,𝑦,𝑓,𝑖,𝑛,𝑝)   𝐴(𝑥,𝑓,𝑛)   𝑅(𝑥,𝑓,𝑖,𝑛,𝑝)

Proof of Theorem bnj518
StepHypRef Expression
1 bnj518.3 . . . 4 (𝜏 ↔ (𝜑𝜓𝑛 ∈ ω ∧ 𝑝𝑛))
2 bnj334 30779 . . . 4 ((𝜑𝜓𝑛 ∈ ω ∧ 𝑝𝑛) ↔ (𝑛 ∈ ω ∧ 𝜑𝜓𝑝𝑛))
31, 2bitri 264 . . 3 (𝜏 ↔ (𝑛 ∈ ω ∧ 𝜑𝜓𝑝𝑛))
4 df-bnj17 30753 . . . 4 ((𝑛 ∈ ω ∧ 𝜑𝜓𝑝𝑛) ↔ ((𝑛 ∈ ω ∧ 𝜑𝜓) ∧ 𝑝𝑛))
5 bnj518.1 . . . . . 6 (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
6 bnj518.2 . . . . . 6 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
75, 6bnj517 30955 . . . . 5 ((𝑛 ∈ ω ∧ 𝜑𝜓) → ∀𝑝𝑛 (𝑓𝑝) ⊆ 𝐴)
87r19.21bi 2932 . . . 4 (((𝑛 ∈ ω ∧ 𝜑𝜓) ∧ 𝑝𝑛) → (𝑓𝑝) ⊆ 𝐴)
94, 8sylbi 207 . . 3 ((𝑛 ∈ ω ∧ 𝜑𝜓𝑝𝑛) → (𝑓𝑝) ⊆ 𝐴)
103, 9sylbi 207 . 2 (𝜏 → (𝑓𝑝) ⊆ 𝐴)
11 ssel 3597 . . . 4 ((𝑓𝑝) ⊆ 𝐴 → (𝑦 ∈ (𝑓𝑝) → 𝑦𝐴))
12 bnj93 30933 . . . . 5 ((𝑅 FrSe 𝐴𝑦𝐴) → pred(𝑦, 𝐴, 𝑅) ∈ V)
1312ex 450 . . . 4 (𝑅 FrSe 𝐴 → (𝑦𝐴 → pred(𝑦, 𝐴, 𝑅) ∈ V))
1411, 13sylan9r 690 . . 3 ((𝑅 FrSe 𝐴 ∧ (𝑓𝑝) ⊆ 𝐴) → (𝑦 ∈ (𝑓𝑝) → pred(𝑦, 𝐴, 𝑅) ∈ V))
1514ralrimiv 2965 . 2 ((𝑅 FrSe 𝐴 ∧ (𝑓𝑝) ⊆ 𝐴) → ∀𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V)
1610, 15sylan2 491 1 ((𝑅 FrSe 𝐴𝜏) → ∀𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  wss 3574  c0 3915   ciun 4520  suc csuc 5725  cfv 5888  ωcom 7065  w-bnj17 30752   predc-bnj14 30754   FrSe w-bnj15 30758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fv 5896  df-om 7066  df-bnj17 30753  df-bnj14 30755  df-bnj13 30757  df-bnj15 30759
This theorem is referenced by:  bnj535  30960  bnj546  30966
  Copyright terms: Public domain W3C validator