![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj518 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj852 30991. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj518.1 | ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
bnj518.2 | ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
bnj518.3 | ⊢ (𝜏 ↔ (𝜑 ∧ 𝜓 ∧ 𝑛 ∈ ω ∧ 𝑝 ∈ 𝑛)) |
Ref | Expression |
---|---|
bnj518 | ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏) → ∀𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj518.3 | . . . 4 ⊢ (𝜏 ↔ (𝜑 ∧ 𝜓 ∧ 𝑛 ∈ ω ∧ 𝑝 ∈ 𝑛)) | |
2 | bnj334 30779 | . . . 4 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝑛 ∈ ω ∧ 𝑝 ∈ 𝑛) ↔ (𝑛 ∈ ω ∧ 𝜑 ∧ 𝜓 ∧ 𝑝 ∈ 𝑛)) | |
3 | 1, 2 | bitri 264 | . . 3 ⊢ (𝜏 ↔ (𝑛 ∈ ω ∧ 𝜑 ∧ 𝜓 ∧ 𝑝 ∈ 𝑛)) |
4 | df-bnj17 30753 | . . . 4 ⊢ ((𝑛 ∈ ω ∧ 𝜑 ∧ 𝜓 ∧ 𝑝 ∈ 𝑛) ↔ ((𝑛 ∈ ω ∧ 𝜑 ∧ 𝜓) ∧ 𝑝 ∈ 𝑛)) | |
5 | bnj518.1 | . . . . . 6 ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) | |
6 | bnj518.2 | . . . . . 6 ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
7 | 5, 6 | bnj517 30955 | . . . . 5 ⊢ ((𝑛 ∈ ω ∧ 𝜑 ∧ 𝜓) → ∀𝑝 ∈ 𝑛 (𝑓‘𝑝) ⊆ 𝐴) |
8 | 7 | r19.21bi 2932 | . . . 4 ⊢ (((𝑛 ∈ ω ∧ 𝜑 ∧ 𝜓) ∧ 𝑝 ∈ 𝑛) → (𝑓‘𝑝) ⊆ 𝐴) |
9 | 4, 8 | sylbi 207 | . . 3 ⊢ ((𝑛 ∈ ω ∧ 𝜑 ∧ 𝜓 ∧ 𝑝 ∈ 𝑛) → (𝑓‘𝑝) ⊆ 𝐴) |
10 | 3, 9 | sylbi 207 | . 2 ⊢ (𝜏 → (𝑓‘𝑝) ⊆ 𝐴) |
11 | ssel 3597 | . . . 4 ⊢ ((𝑓‘𝑝) ⊆ 𝐴 → (𝑦 ∈ (𝑓‘𝑝) → 𝑦 ∈ 𝐴)) | |
12 | bnj93 30933 | . . . . 5 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑦 ∈ 𝐴) → pred(𝑦, 𝐴, 𝑅) ∈ V) | |
13 | 12 | ex 450 | . . . 4 ⊢ (𝑅 FrSe 𝐴 → (𝑦 ∈ 𝐴 → pred(𝑦, 𝐴, 𝑅) ∈ V)) |
14 | 11, 13 | sylan9r 690 | . . 3 ⊢ ((𝑅 FrSe 𝐴 ∧ (𝑓‘𝑝) ⊆ 𝐴) → (𝑦 ∈ (𝑓‘𝑝) → pred(𝑦, 𝐴, 𝑅) ∈ V)) |
15 | 14 | ralrimiv 2965 | . 2 ⊢ ((𝑅 FrSe 𝐴 ∧ (𝑓‘𝑝) ⊆ 𝐴) → ∀𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V) |
16 | 10, 15 | sylan2 491 | 1 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏) → ∀𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ∀wral 2912 Vcvv 3200 ⊆ wss 3574 ∅c0 3915 ∪ ciun 4520 suc csuc 5725 ‘cfv 5888 ωcom 7065 ∧ w-bnj17 30752 predc-bnj14 30754 FrSe w-bnj15 30758 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-tr 4753 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fv 5896 df-om 7066 df-bnj17 30753 df-bnj14 30755 df-bnj13 30757 df-bnj15 30759 |
This theorem is referenced by: bnj535 30960 bnj546 30966 |
Copyright terms: Public domain | W3C validator |