![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brcofffn | Structured version Visualization version GIF version |
Description: Conditions allowing the decomposition of a binary relation. (Contributed by RP, 8-Jun-2021.) |
Ref | Expression |
---|---|
brcofffn.c | ⊢ (𝜑 → 𝐶 Fn 𝑍) |
brcofffn.d | ⊢ (𝜑 → 𝐷:𝑌⟶𝑍) |
brcofffn.e | ⊢ (𝜑 → 𝐸:𝑋⟶𝑌) |
brcofffn.r | ⊢ (𝜑 → 𝐴(𝐶 ∘ (𝐷 ∘ 𝐸))𝐵) |
Ref | Expression |
---|---|
brcofffn | ⊢ (𝜑 → (𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)𝐷(𝐷‘(𝐸‘𝐴)) ∧ (𝐷‘(𝐸‘𝐴))𝐶𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brcofffn.c | . . . . 5 ⊢ (𝜑 → 𝐶 Fn 𝑍) | |
2 | brcofffn.d | . . . . 5 ⊢ (𝜑 → 𝐷:𝑌⟶𝑍) | |
3 | fnfco 6069 | . . . . 5 ⊢ ((𝐶 Fn 𝑍 ∧ 𝐷:𝑌⟶𝑍) → (𝐶 ∘ 𝐷) Fn 𝑌) | |
4 | 1, 2, 3 | syl2anc 693 | . . . 4 ⊢ (𝜑 → (𝐶 ∘ 𝐷) Fn 𝑌) |
5 | brcofffn.e | . . . 4 ⊢ (𝜑 → 𝐸:𝑋⟶𝑌) | |
6 | brcofffn.r | . . . . 5 ⊢ (𝜑 → 𝐴(𝐶 ∘ (𝐷 ∘ 𝐸))𝐵) | |
7 | coass 5654 | . . . . . 6 ⊢ ((𝐶 ∘ 𝐷) ∘ 𝐸) = (𝐶 ∘ (𝐷 ∘ 𝐸)) | |
8 | 7 | breqi 4659 | . . . . 5 ⊢ (𝐴((𝐶 ∘ 𝐷) ∘ 𝐸)𝐵 ↔ 𝐴(𝐶 ∘ (𝐷 ∘ 𝐸))𝐵) |
9 | 6, 8 | sylibr 224 | . . . 4 ⊢ (𝜑 → 𝐴((𝐶 ∘ 𝐷) ∘ 𝐸)𝐵) |
10 | 4, 5, 9 | brcoffn 38328 | . . 3 ⊢ (𝜑 → (𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵)) |
11 | 1 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵)) → 𝐶 Fn 𝑍) |
12 | 2 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵)) → 𝐷:𝑌⟶𝑍) |
13 | simprr 796 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵)) → (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵) | |
14 | 11, 12, 13 | brcoffn 38328 | . . . 4 ⊢ ((𝜑 ∧ (𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵)) → ((𝐸‘𝐴)𝐷(𝐷‘(𝐸‘𝐴)) ∧ (𝐷‘(𝐸‘𝐴))𝐶𝐵)) |
15 | 14 | ex 450 | . . 3 ⊢ (𝜑 → ((𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵) → ((𝐸‘𝐴)𝐷(𝐷‘(𝐸‘𝐴)) ∧ (𝐷‘(𝐸‘𝐴))𝐶𝐵))) |
16 | 10, 15 | jcai 559 | . 2 ⊢ (𝜑 → ((𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵) ∧ ((𝐸‘𝐴)𝐷(𝐷‘(𝐸‘𝐴)) ∧ (𝐷‘(𝐸‘𝐴))𝐶𝐵))) |
17 | simpll 790 | . . 3 ⊢ (((𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵) ∧ ((𝐸‘𝐴)𝐷(𝐷‘(𝐸‘𝐴)) ∧ (𝐷‘(𝐸‘𝐴))𝐶𝐵)) → 𝐴𝐸(𝐸‘𝐴)) | |
18 | simprl 794 | . . 3 ⊢ (((𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵) ∧ ((𝐸‘𝐴)𝐷(𝐷‘(𝐸‘𝐴)) ∧ (𝐷‘(𝐸‘𝐴))𝐶𝐵)) → (𝐸‘𝐴)𝐷(𝐷‘(𝐸‘𝐴))) | |
19 | simprr 796 | . . 3 ⊢ (((𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵) ∧ ((𝐸‘𝐴)𝐷(𝐷‘(𝐸‘𝐴)) ∧ (𝐷‘(𝐸‘𝐴))𝐶𝐵)) → (𝐷‘(𝐸‘𝐴))𝐶𝐵) | |
20 | 17, 18, 19 | 3jca 1242 | . 2 ⊢ (((𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵) ∧ ((𝐸‘𝐴)𝐷(𝐷‘(𝐸‘𝐴)) ∧ (𝐷‘(𝐸‘𝐴))𝐶𝐵)) → (𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)𝐷(𝐷‘(𝐸‘𝐴)) ∧ (𝐷‘(𝐸‘𝐴))𝐶𝐵)) |
21 | 16, 20 | syl 17 | 1 ⊢ (𝜑 → (𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)𝐷(𝐷‘(𝐸‘𝐴)) ∧ (𝐷‘(𝐸‘𝐴))𝐶𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 class class class wbr 4653 ∘ ccom 5118 Fn wfn 5883 ⟶wf 5884 ‘cfv 5888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 |
This theorem is referenced by: brco3f1o 38331 neicvgmex 38415 neicvgel1 38417 |
Copyright terms: Public domain | W3C validator |