Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcofffn Structured version   Visualization version   Unicode version

Theorem brcofffn 38329
Description: Conditions allowing the decomposition of a binary relation. (Contributed by RP, 8-Jun-2021.)
Hypotheses
Ref Expression
brcofffn.c  |-  ( ph  ->  C  Fn  Z )
brcofffn.d  |-  ( ph  ->  D : Y --> Z )
brcofffn.e  |-  ( ph  ->  E : X --> Y )
brcofffn.r  |-  ( ph  ->  A ( C  o.  ( D  o.  E
) ) B )
Assertion
Ref Expression
brcofffn  |-  ( ph  ->  ( A E ( E `  A )  /\  ( E `  A ) D ( D `  ( E `
 A ) )  /\  ( D `  ( E `  A ) ) C B ) )

Proof of Theorem brcofffn
StepHypRef Expression
1 brcofffn.c . . . . 5  |-  ( ph  ->  C  Fn  Z )
2 brcofffn.d . . . . 5  |-  ( ph  ->  D : Y --> Z )
3 fnfco 6069 . . . . 5  |-  ( ( C  Fn  Z  /\  D : Y --> Z )  ->  ( C  o.  D )  Fn  Y
)
41, 2, 3syl2anc 693 . . . 4  |-  ( ph  ->  ( C  o.  D
)  Fn  Y )
5 brcofffn.e . . . 4  |-  ( ph  ->  E : X --> Y )
6 brcofffn.r . . . . 5  |-  ( ph  ->  A ( C  o.  ( D  o.  E
) ) B )
7 coass 5654 . . . . . 6  |-  ( ( C  o.  D )  o.  E )  =  ( C  o.  ( D  o.  E )
)
87breqi 4659 . . . . 5  |-  ( A ( ( C  o.  D )  o.  E
) B  <->  A ( C  o.  ( D  o.  E ) ) B )
96, 8sylibr 224 . . . 4  |-  ( ph  ->  A ( ( C  o.  D )  o.  E ) B )
104, 5, 9brcoffn 38328 . . 3  |-  ( ph  ->  ( A E ( E `  A )  /\  ( E `  A ) ( C  o.  D ) B ) )
111adantr 481 . . . . 5  |-  ( (
ph  /\  ( A E ( E `  A )  /\  ( E `  A )
( C  o.  D
) B ) )  ->  C  Fn  Z
)
122adantr 481 . . . . 5  |-  ( (
ph  /\  ( A E ( E `  A )  /\  ( E `  A )
( C  o.  D
) B ) )  ->  D : Y --> Z )
13 simprr 796 . . . . 5  |-  ( (
ph  /\  ( A E ( E `  A )  /\  ( E `  A )
( C  o.  D
) B ) )  ->  ( E `  A ) ( C  o.  D ) B )
1411, 12, 13brcoffn 38328 . . . 4  |-  ( (
ph  /\  ( A E ( E `  A )  /\  ( E `  A )
( C  o.  D
) B ) )  ->  ( ( E `
 A ) D ( D `  ( E `  A )
)  /\  ( D `  ( E `  A
) ) C B ) )
1514ex 450 . . 3  |-  ( ph  ->  ( ( A E ( E `  A
)  /\  ( E `  A ) ( C  o.  D ) B )  ->  ( ( E `  A ) D ( D `  ( E `  A ) )  /\  ( D `
 ( E `  A ) ) C B ) ) )
1610, 15jcai 559 . 2  |-  ( ph  ->  ( ( A E ( E `  A
)  /\  ( E `  A ) ( C  o.  D ) B )  /\  ( ( E `  A ) D ( D `  ( E `  A ) )  /\  ( D `
 ( E `  A ) ) C B ) ) )
17 simpll 790 . . 3  |-  ( ( ( A E ( E `  A )  /\  ( E `  A ) ( C  o.  D ) B )  /\  ( ( E `  A ) D ( D `  ( E `  A ) )  /\  ( D `
 ( E `  A ) ) C B ) )  ->  A E ( E `  A ) )
18 simprl 794 . . 3  |-  ( ( ( A E ( E `  A )  /\  ( E `  A ) ( C  o.  D ) B )  /\  ( ( E `  A ) D ( D `  ( E `  A ) )  /\  ( D `
 ( E `  A ) ) C B ) )  -> 
( E `  A
) D ( D `
 ( E `  A ) ) )
19 simprr 796 . . 3  |-  ( ( ( A E ( E `  A )  /\  ( E `  A ) ( C  o.  D ) B )  /\  ( ( E `  A ) D ( D `  ( E `  A ) )  /\  ( D `
 ( E `  A ) ) C B ) )  -> 
( D `  ( E `  A )
) C B )
2017, 18, 193jca 1242 . 2  |-  ( ( ( A E ( E `  A )  /\  ( E `  A ) ( C  o.  D ) B )  /\  ( ( E `  A ) D ( D `  ( E `  A ) )  /\  ( D `
 ( E `  A ) ) C B ) )  -> 
( A E ( E `  A )  /\  ( E `  A ) D ( D `  ( E `
 A ) )  /\  ( D `  ( E `  A ) ) C B ) )
2116, 20syl 17 1  |-  ( ph  ->  ( A E ( E `  A )  /\  ( E `  A ) D ( D `  ( E `
 A ) )  /\  ( D `  ( E `  A ) ) C B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037   class class class wbr 4653    o. ccom 5118    Fn wfn 5883   -->wf 5884   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896
This theorem is referenced by:  brco3f1o  38331  neicvgmex  38415  neicvgel1  38417
  Copyright terms: Public domain W3C validator