![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brco2f1o | Structured version Visualization version GIF version |
Description: Conditions allowing the decomposition of a binary relation. (Contributed by RP, 8-Jun-2021.) |
Ref | Expression |
---|---|
brco2f1o.c | ⊢ (𝜑 → 𝐶:𝑌–1-1-onto→𝑍) |
brco2f1o.d | ⊢ (𝜑 → 𝐷:𝑋–1-1-onto→𝑌) |
brco2f1o.r | ⊢ (𝜑 → 𝐴(𝐶 ∘ 𝐷)𝐵) |
Ref | Expression |
---|---|
brco2f1o | ⊢ (𝜑 → ((◡𝐶‘𝐵)𝐶𝐵 ∧ 𝐴𝐷(◡𝐶‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brco2f1o.d | . . . 4 ⊢ (𝜑 → 𝐷:𝑋–1-1-onto→𝑌) | |
2 | f1ocnv 6149 | . . . 4 ⊢ (𝐷:𝑋–1-1-onto→𝑌 → ◡𝐷:𝑌–1-1-onto→𝑋) | |
3 | f1ofn 6138 | . . . 4 ⊢ (◡𝐷:𝑌–1-1-onto→𝑋 → ◡𝐷 Fn 𝑌) | |
4 | 1, 2, 3 | 3syl 18 | . . 3 ⊢ (𝜑 → ◡𝐷 Fn 𝑌) |
5 | brco2f1o.c | . . . 4 ⊢ (𝜑 → 𝐶:𝑌–1-1-onto→𝑍) | |
6 | f1ocnv 6149 | . . . 4 ⊢ (𝐶:𝑌–1-1-onto→𝑍 → ◡𝐶:𝑍–1-1-onto→𝑌) | |
7 | f1of 6137 | . . . 4 ⊢ (◡𝐶:𝑍–1-1-onto→𝑌 → ◡𝐶:𝑍⟶𝑌) | |
8 | 5, 6, 7 | 3syl 18 | . . 3 ⊢ (𝜑 → ◡𝐶:𝑍⟶𝑌) |
9 | brco2f1o.r | . . . 4 ⊢ (𝜑 → 𝐴(𝐶 ∘ 𝐷)𝐵) | |
10 | relco 5633 | . . . . . 6 ⊢ Rel (𝐶 ∘ 𝐷) | |
11 | 10 | relbrcnv 5506 | . . . . 5 ⊢ (𝐵◡(𝐶 ∘ 𝐷)𝐴 ↔ 𝐴(𝐶 ∘ 𝐷)𝐵) |
12 | cnvco 5308 | . . . . . 6 ⊢ ◡(𝐶 ∘ 𝐷) = (◡𝐷 ∘ ◡𝐶) | |
13 | 12 | breqi 4659 | . . . . 5 ⊢ (𝐵◡(𝐶 ∘ 𝐷)𝐴 ↔ 𝐵(◡𝐷 ∘ ◡𝐶)𝐴) |
14 | 11, 13 | bitr3i 266 | . . . 4 ⊢ (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ 𝐵(◡𝐷 ∘ ◡𝐶)𝐴) |
15 | 9, 14 | sylib 208 | . . 3 ⊢ (𝜑 → 𝐵(◡𝐷 ∘ ◡𝐶)𝐴) |
16 | 4, 8, 15 | brcoffn 38328 | . 2 ⊢ (𝜑 → (𝐵◡𝐶(◡𝐶‘𝐵) ∧ (◡𝐶‘𝐵)◡𝐷𝐴)) |
17 | f1orel 6140 | . . . 4 ⊢ (𝐶:𝑌–1-1-onto→𝑍 → Rel 𝐶) | |
18 | relbrcnvg 5504 | . . . 4 ⊢ (Rel 𝐶 → (𝐵◡𝐶(◡𝐶‘𝐵) ↔ (◡𝐶‘𝐵)𝐶𝐵)) | |
19 | 5, 17, 18 | 3syl 18 | . . 3 ⊢ (𝜑 → (𝐵◡𝐶(◡𝐶‘𝐵) ↔ (◡𝐶‘𝐵)𝐶𝐵)) |
20 | f1orel 6140 | . . . 4 ⊢ (𝐷:𝑋–1-1-onto→𝑌 → Rel 𝐷) | |
21 | relbrcnvg 5504 | . . . 4 ⊢ (Rel 𝐷 → ((◡𝐶‘𝐵)◡𝐷𝐴 ↔ 𝐴𝐷(◡𝐶‘𝐵))) | |
22 | 1, 20, 21 | 3syl 18 | . . 3 ⊢ (𝜑 → ((◡𝐶‘𝐵)◡𝐷𝐴 ↔ 𝐴𝐷(◡𝐶‘𝐵))) |
23 | 19, 22 | anbi12d 747 | . 2 ⊢ (𝜑 → ((𝐵◡𝐶(◡𝐶‘𝐵) ∧ (◡𝐶‘𝐵)◡𝐷𝐴) ↔ ((◡𝐶‘𝐵)𝐶𝐵 ∧ 𝐴𝐷(◡𝐶‘𝐵)))) |
24 | 16, 23 | mpbid 222 | 1 ⊢ (𝜑 → ((◡𝐶‘𝐵)𝐶𝐵 ∧ 𝐴𝐷(◡𝐶‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 class class class wbr 4653 ◡ccnv 5113 ∘ ccom 5118 Rel wrel 5119 Fn wfn 5883 ⟶wf 5884 –1-1-onto→wf1o 5887 ‘cfv 5888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |