MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brdifun Structured version   Visualization version   GIF version

Theorem brdifun 7771
Description: Evaluate the incomparability relation. (Contributed by Mario Carneiro, 9-Jul-2014.)
Hypothesis
Ref Expression
swoer.1 𝑅 = ((𝑋 × 𝑋) ∖ ( < < ))
Assertion
Ref Expression
brdifun ((𝐴𝑋𝐵𝑋) → (𝐴𝑅𝐵 ↔ ¬ (𝐴 < 𝐵𝐵 < 𝐴)))

Proof of Theorem brdifun
StepHypRef Expression
1 opelxpi 5148 . . . 4 ((𝐴𝑋𝐵𝑋) → ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑋))
2 df-br 4654 . . . 4 (𝐴(𝑋 × 𝑋)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑋))
31, 2sylibr 224 . . 3 ((𝐴𝑋𝐵𝑋) → 𝐴(𝑋 × 𝑋)𝐵)
4 swoer.1 . . . . . 6 𝑅 = ((𝑋 × 𝑋) ∖ ( < < ))
54breqi 4659 . . . . 5 (𝐴𝑅𝐵𝐴((𝑋 × 𝑋) ∖ ( < < ))𝐵)
6 brdif 4705 . . . . 5 (𝐴((𝑋 × 𝑋) ∖ ( < < ))𝐵 ↔ (𝐴(𝑋 × 𝑋)𝐵 ∧ ¬ 𝐴( < < )𝐵))
75, 6bitri 264 . . . 4 (𝐴𝑅𝐵 ↔ (𝐴(𝑋 × 𝑋)𝐵 ∧ ¬ 𝐴( < < )𝐵))
87baib 944 . . 3 (𝐴(𝑋 × 𝑋)𝐵 → (𝐴𝑅𝐵 ↔ ¬ 𝐴( < < )𝐵))
93, 8syl 17 . 2 ((𝐴𝑋𝐵𝑋) → (𝐴𝑅𝐵 ↔ ¬ 𝐴( < < )𝐵))
10 brun 4703 . . . 4 (𝐴( < < )𝐵 ↔ (𝐴 < 𝐵𝐴 < 𝐵))
11 brcnvg 5303 . . . . 5 ((𝐴𝑋𝐵𝑋) → (𝐴 < 𝐵𝐵 < 𝐴))
1211orbi2d 738 . . . 4 ((𝐴𝑋𝐵𝑋) → ((𝐴 < 𝐵𝐴 < 𝐵) ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
1310, 12syl5bb 272 . . 3 ((𝐴𝑋𝐵𝑋) → (𝐴( < < )𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
1413notbid 308 . 2 ((𝐴𝑋𝐵𝑋) → (¬ 𝐴( < < )𝐵 ↔ ¬ (𝐴 < 𝐵𝐵 < 𝐴)))
159, 14bitrd 268 1 ((𝐴𝑋𝐵𝑋) → (𝐴𝑅𝐵 ↔ ¬ (𝐴 < 𝐵𝐵 < 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  cdif 3571  cun 3572  cop 4183   class class class wbr 4653   × cxp 5112  ccnv 5113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-cnv 5122
This theorem is referenced by:  swoer  7772  swoord1  7773  swoord2  7774  swoso  7775
  Copyright terms: Public domain W3C validator