MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swoso Structured version   Visualization version   GIF version

Theorem swoso 7775
Description: If the incomparability relation is equivalent to equality in a subset, then the partial order strictly orders the subset. (Contributed by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
swoer.1 𝑅 = ((𝑋 × 𝑋) ∖ ( < < ))
swoer.2 ((𝜑 ∧ (𝑦𝑋𝑧𝑋)) → (𝑦 < 𝑧 → ¬ 𝑧 < 𝑦))
swoer.3 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
swoso.4 (𝜑𝑌𝑋)
swoso.5 ((𝜑 ∧ (𝑥𝑌𝑦𝑌𝑥𝑅𝑦)) → 𝑥 = 𝑦)
Assertion
Ref Expression
swoso (𝜑< Or 𝑌)
Distinct variable groups:   𝑥,𝑦,𝑧, <   𝜑,𝑥,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧   𝑥,𝑌,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦,𝑧)   𝑌(𝑧)

Proof of Theorem swoso
StepHypRef Expression
1 swoso.4 . . 3 (𝜑𝑌𝑋)
2 swoer.2 . . . 4 ((𝜑 ∧ (𝑦𝑋𝑧𝑋)) → (𝑦 < 𝑧 → ¬ 𝑧 < 𝑦))
3 swoer.3 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
42, 3swopo 5045 . . 3 (𝜑< Po 𝑋)
5 poss 5037 . . 3 (𝑌𝑋 → ( < Po 𝑋< Po 𝑌))
61, 4, 5sylc 65 . 2 (𝜑< Po 𝑌)
71sselda 3603 . . . . . . 7 ((𝜑𝑥𝑌) → 𝑥𝑋)
81sselda 3603 . . . . . . 7 ((𝜑𝑦𝑌) → 𝑦𝑋)
97, 8anim12dan 882 . . . . . 6 ((𝜑 ∧ (𝑥𝑌𝑦𝑌)) → (𝑥𝑋𝑦𝑋))
10 swoer.1 . . . . . . 7 𝑅 = ((𝑋 × 𝑋) ∖ ( < < ))
1110brdifun 7771 . . . . . 6 ((𝑥𝑋𝑦𝑋) → (𝑥𝑅𝑦 ↔ ¬ (𝑥 < 𝑦𝑦 < 𝑥)))
129, 11syl 17 . . . . 5 ((𝜑 ∧ (𝑥𝑌𝑦𝑌)) → (𝑥𝑅𝑦 ↔ ¬ (𝑥 < 𝑦𝑦 < 𝑥)))
13 df-3an 1039 . . . . . . 7 ((𝑥𝑌𝑦𝑌𝑥𝑅𝑦) ↔ ((𝑥𝑌𝑦𝑌) ∧ 𝑥𝑅𝑦))
14 swoso.5 . . . . . . 7 ((𝜑 ∧ (𝑥𝑌𝑦𝑌𝑥𝑅𝑦)) → 𝑥 = 𝑦)
1513, 14sylan2br 493 . . . . . 6 ((𝜑 ∧ ((𝑥𝑌𝑦𝑌) ∧ 𝑥𝑅𝑦)) → 𝑥 = 𝑦)
1615expr 643 . . . . 5 ((𝜑 ∧ (𝑥𝑌𝑦𝑌)) → (𝑥𝑅𝑦𝑥 = 𝑦))
1712, 16sylbird 250 . . . 4 ((𝜑 ∧ (𝑥𝑌𝑦𝑌)) → (¬ (𝑥 < 𝑦𝑦 < 𝑥) → 𝑥 = 𝑦))
1817orrd 393 . . 3 ((𝜑 ∧ (𝑥𝑌𝑦𝑌)) → ((𝑥 < 𝑦𝑦 < 𝑥) ∨ 𝑥 = 𝑦))
19 3orcomb 1048 . . . 4 ((𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ (𝑥 < 𝑦𝑦 < 𝑥𝑥 = 𝑦))
20 df-3or 1038 . . . 4 ((𝑥 < 𝑦𝑦 < 𝑥𝑥 = 𝑦) ↔ ((𝑥 < 𝑦𝑦 < 𝑥) ∨ 𝑥 = 𝑦))
2119, 20bitri 264 . . 3 ((𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ ((𝑥 < 𝑦𝑦 < 𝑥) ∨ 𝑥 = 𝑦))
2218, 21sylibr 224 . 2 ((𝜑 ∧ (𝑥𝑌𝑦𝑌)) → (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
236, 22issod 5065 1 (𝜑< Or 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3o 1036  w3a 1037   = wceq 1483  wcel 1990  cdif 3571  cun 3572  wss 3574   class class class wbr 4653   Po wpo 5033   Or wor 5034   × cxp 5112  ccnv 5113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-po 5035  df-so 5036  df-xp 5120  df-cnv 5122
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator