MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brdom2 Structured version   Visualization version   GIF version

Theorem brdom2 7985
Description: Dominance in terms of strict dominance and equinumerosity. Theorem 22(iv) of [Suppes] p. 97. (Contributed by NM, 17-Jun-1998.)
Assertion
Ref Expression
brdom2 (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵))

Proof of Theorem brdom2
StepHypRef Expression
1 dfdom2 7981 . . 3 ≼ = ( ≺ ∪ ≈ )
21eleq2i 2693 . 2 (⟨𝐴, 𝐵⟩ ∈ ≼ ↔ ⟨𝐴, 𝐵⟩ ∈ ( ≺ ∪ ≈ ))
3 df-br 4654 . 2 (𝐴𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ≼ )
4 df-br 4654 . . . 4 (𝐴𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ≺ )
5 df-br 4654 . . . 4 (𝐴𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ≈ )
64, 5orbi12i 543 . . 3 ((𝐴𝐵𝐴𝐵) ↔ (⟨𝐴, 𝐵⟩ ∈ ≺ ∨ ⟨𝐴, 𝐵⟩ ∈ ≈ ))
7 elun 3753 . . 3 (⟨𝐴, 𝐵⟩ ∈ ( ≺ ∪ ≈ ) ↔ (⟨𝐴, 𝐵⟩ ∈ ≺ ∨ ⟨𝐴, 𝐵⟩ ∈ ≈ ))
86, 7bitr4i 267 . 2 ((𝐴𝐵𝐴𝐵) ↔ ⟨𝐴, 𝐵⟩ ∈ ( ≺ ∪ ≈ ))
92, 3, 83bitr4i 292 1 (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wo 383  wcel 1990  cun 3572  cop 4183   class class class wbr 4653  cen 7952  cdom 7953  csdm 7954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-f1o 5895  df-en 7956  df-dom 7957  df-sdom 7958
This theorem is referenced by:  bren2  7986  domnsym  8086  modom  8161  carddom2  8803  axcc4dom  9263  entric  9379  entri2  9380  gchor  9449  frgpcyg  19922  iunmbl2  23325  dyadmbl  23368  padct  29497  volmeas  30294  ovoliunnfl  33451  ctbnfien  37382
  Copyright terms: Public domain W3C validator