MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpcyg Structured version   Visualization version   GIF version

Theorem frgpcyg 19922
Description: A free group is cyclic iff it has zero or one generator. (Contributed by Mario Carneiro, 21-Apr-2016.) (Proof shortened by AV, 18-Apr-2021.)
Hypothesis
Ref Expression
frgpcyg.g 𝐺 = (freeGrp‘𝐼)
Assertion
Ref Expression
frgpcyg (𝐼 ≼ 1𝑜𝐺 ∈ CycGrp)

Proof of Theorem frgpcyg
Dummy variables 𝑓 𝑔 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brdom2 7985 . . 3 (𝐼 ≼ 1𝑜 ↔ (𝐼 ≺ 1𝑜𝐼 ≈ 1𝑜))
2 sdom1 8160 . . . . 5 (𝐼 ≺ 1𝑜𝐼 = ∅)
3 frgpcyg.g . . . . . . 7 𝐺 = (freeGrp‘𝐼)
4 fveq2 6191 . . . . . . 7 (𝐼 = ∅ → (freeGrp‘𝐼) = (freeGrp‘∅))
53, 4syl5eq 2668 . . . . . 6 (𝐼 = ∅ → 𝐺 = (freeGrp‘∅))
6 0ex 4790 . . . . . . . 8 ∅ ∈ V
7 eqid 2622 . . . . . . . . 9 (freeGrp‘∅) = (freeGrp‘∅)
87frgpgrp 18175 . . . . . . . 8 (∅ ∈ V → (freeGrp‘∅) ∈ Grp)
96, 8ax-mp 5 . . . . . . 7 (freeGrp‘∅) ∈ Grp
10 eqid 2622 . . . . . . . 8 (Base‘(freeGrp‘∅)) = (Base‘(freeGrp‘∅))
117, 100frgp 18192 . . . . . . 7 (Base‘(freeGrp‘∅)) ≈ 1𝑜
12100cyg 18294 . . . . . . 7 (((freeGrp‘∅) ∈ Grp ∧ (Base‘(freeGrp‘∅)) ≈ 1𝑜) → (freeGrp‘∅) ∈ CycGrp)
139, 11, 12mp2an 708 . . . . . 6 (freeGrp‘∅) ∈ CycGrp
145, 13syl6eqel 2709 . . . . 5 (𝐼 = ∅ → 𝐺 ∈ CycGrp)
152, 14sylbi 207 . . . 4 (𝐼 ≺ 1𝑜𝐺 ∈ CycGrp)
16 eqid 2622 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
17 eqid 2622 . . . . 5 (.g𝐺) = (.g𝐺)
18 relen 7960 . . . . . . 7 Rel ≈
1918brrelexi 5158 . . . . . 6 (𝐼 ≈ 1𝑜𝐼 ∈ V)
203frgpgrp 18175 . . . . . 6 (𝐼 ∈ V → 𝐺 ∈ Grp)
2119, 20syl 17 . . . . 5 (𝐼 ≈ 1𝑜𝐺 ∈ Grp)
22 eqid 2622 . . . . . . . 8 ( ~FG𝐼) = ( ~FG𝐼)
23 eqid 2622 . . . . . . . 8 (varFGrp𝐼) = (varFGrp𝐼)
2422, 23, 3, 16vrgpf 18181 . . . . . . 7 (𝐼 ∈ V → (varFGrp𝐼):𝐼⟶(Base‘𝐺))
2519, 24syl 17 . . . . . 6 (𝐼 ≈ 1𝑜 → (varFGrp𝐼):𝐼⟶(Base‘𝐺))
26 en1uniel 8028 . . . . . 6 (𝐼 ≈ 1𝑜 𝐼𝐼)
2725, 26ffvelrnd 6360 . . . . 5 (𝐼 ≈ 1𝑜 → ((varFGrp𝐼)‘ 𝐼) ∈ (Base‘𝐺))
28 zringgrp 19823 . . . . . . . . 9 ring ∈ Grp
29 uniexg 6955 . . . . . . . . . . . 12 (𝐼 ∈ V → 𝐼 ∈ V)
3019, 29syl 17 . . . . . . . . . . 11 (𝐼 ≈ 1𝑜 𝐼 ∈ V)
31 1zzd 11408 . . . . . . . . . . 11 (𝐼 ≈ 1𝑜 → 1 ∈ ℤ)
3230, 31fsnd 6179 . . . . . . . . . 10 (𝐼 ≈ 1𝑜 → {⟨ 𝐼, 1⟩}:{ 𝐼}⟶ℤ)
33 en1b 8024 . . . . . . . . . . . 12 (𝐼 ≈ 1𝑜𝐼 = { 𝐼})
3433biimpi 206 . . . . . . . . . . 11 (𝐼 ≈ 1𝑜𝐼 = { 𝐼})
3534feq2d 6031 . . . . . . . . . 10 (𝐼 ≈ 1𝑜 → ({⟨ 𝐼, 1⟩}:𝐼⟶ℤ ↔ {⟨ 𝐼, 1⟩}:{ 𝐼}⟶ℤ))
3632, 35mpbird 247 . . . . . . . . 9 (𝐼 ≈ 1𝑜 → {⟨ 𝐼, 1⟩}:𝐼⟶ℤ)
37 zringbas 19824 . . . . . . . . . 10 ℤ = (Base‘ℤring)
383, 37, 23frgpup3 18191 . . . . . . . . 9 ((ℤring ∈ Grp ∧ 𝐼 ∈ V ∧ {⟨ 𝐼, 1⟩}:𝐼⟶ℤ) → ∃!𝑓 ∈ (𝐺 GrpHom ℤring)(𝑓 ∘ (varFGrp𝐼)) = {⟨ 𝐼, 1⟩})
3928, 19, 36, 38mp3an2i 1429 . . . . . . . 8 (𝐼 ≈ 1𝑜 → ∃!𝑓 ∈ (𝐺 GrpHom ℤring)(𝑓 ∘ (varFGrp𝐼)) = {⟨ 𝐼, 1⟩})
4039adantr 481 . . . . . . 7 ((𝐼 ≈ 1𝑜𝑥 ∈ (Base‘𝐺)) → ∃!𝑓 ∈ (𝐺 GrpHom ℤring)(𝑓 ∘ (varFGrp𝐼)) = {⟨ 𝐼, 1⟩})
41 reurex 3160 . . . . . . 7 (∃!𝑓 ∈ (𝐺 GrpHom ℤring)(𝑓 ∘ (varFGrp𝐼)) = {⟨ 𝐼, 1⟩} → ∃𝑓 ∈ (𝐺 GrpHom ℤring)(𝑓 ∘ (varFGrp𝐼)) = {⟨ 𝐼, 1⟩})
4240, 41syl 17 . . . . . 6 ((𝐼 ≈ 1𝑜𝑥 ∈ (Base‘𝐺)) → ∃𝑓 ∈ (𝐺 GrpHom ℤring)(𝑓 ∘ (varFGrp𝐼)) = {⟨ 𝐼, 1⟩})
43 fveq1 6190 . . . . . . . . . 10 ((𝑓 ∘ (varFGrp𝐼)) = {⟨ 𝐼, 1⟩} → ((𝑓 ∘ (varFGrp𝐼))‘ 𝐼) = ({⟨ 𝐼, 1⟩}‘ 𝐼))
44 fvco3 6275 . . . . . . . . . . . 12 (((varFGrp𝐼):𝐼⟶(Base‘𝐺) ∧ 𝐼𝐼) → ((𝑓 ∘ (varFGrp𝐼))‘ 𝐼) = (𝑓‘((varFGrp𝐼)‘ 𝐼)))
4525, 26, 44syl2anc 693 . . . . . . . . . . 11 (𝐼 ≈ 1𝑜 → ((𝑓 ∘ (varFGrp𝐼))‘ 𝐼) = (𝑓‘((varFGrp𝐼)‘ 𝐼)))
46 1z 11407 . . . . . . . . . . . 12 1 ∈ ℤ
47 fvsng 6447 . . . . . . . . . . . 12 (( 𝐼 ∈ V ∧ 1 ∈ ℤ) → ({⟨ 𝐼, 1⟩}‘ 𝐼) = 1)
4830, 46, 47sylancl 694 . . . . . . . . . . 11 (𝐼 ≈ 1𝑜 → ({⟨ 𝐼, 1⟩}‘ 𝐼) = 1)
4945, 48eqeq12d 2637 . . . . . . . . . 10 (𝐼 ≈ 1𝑜 → (((𝑓 ∘ (varFGrp𝐼))‘ 𝐼) = ({⟨ 𝐼, 1⟩}‘ 𝐼) ↔ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1))
5043, 49syl5ib 234 . . . . . . . . 9 (𝐼 ≈ 1𝑜 → ((𝑓 ∘ (varFGrp𝐼)) = {⟨ 𝐼, 1⟩} → (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1))
5150ad2antrr 762 . . . . . . . 8 (((𝐼 ≈ 1𝑜𝑥 ∈ (Base‘𝐺)) ∧ 𝑓 ∈ (𝐺 GrpHom ℤring)) → ((𝑓 ∘ (varFGrp𝐼)) = {⟨ 𝐼, 1⟩} → (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1))
5216, 37ghmf 17664 . . . . . . . . . . . . 13 (𝑓 ∈ (𝐺 GrpHom ℤring) → 𝑓:(Base‘𝐺)⟶ℤ)
5352ad2antrl 764 . . . . . . . . . . . 12 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → 𝑓:(Base‘𝐺)⟶ℤ)
5453ffvelrnda 6359 . . . . . . . . . . 11 (((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑓𝑥) ∈ ℤ)
5554an32s 846 . . . . . . . . . 10 (((𝐼 ≈ 1𝑜𝑥 ∈ (Base‘𝐺)) ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → (𝑓𝑥) ∈ ℤ)
56 mptresid 5456 . . . . . . . . . . . . . 14 (𝑥 ∈ (Base‘𝐺) ↦ 𝑥) = ( I ↾ (Base‘𝐺))
573, 16, 23frgpup3 18191 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ Grp ∧ 𝐼 ∈ V ∧ (varFGrp𝐼):𝐼⟶(Base‘𝐺)) → ∃!𝑔 ∈ (𝐺 GrpHom 𝐺)(𝑔 ∘ (varFGrp𝐼)) = (varFGrp𝐼))
5821, 19, 25, 57syl3anc 1326 . . . . . . . . . . . . . . . . 17 (𝐼 ≈ 1𝑜 → ∃!𝑔 ∈ (𝐺 GrpHom 𝐺)(𝑔 ∘ (varFGrp𝐼)) = (varFGrp𝐼))
59 reurmo 3161 . . . . . . . . . . . . . . . . 17 (∃!𝑔 ∈ (𝐺 GrpHom 𝐺)(𝑔 ∘ (varFGrp𝐼)) = (varFGrp𝐼) → ∃*𝑔 ∈ (𝐺 GrpHom 𝐺)(𝑔 ∘ (varFGrp𝐼)) = (varFGrp𝐼))
6058, 59syl 17 . . . . . . . . . . . . . . . 16 (𝐼 ≈ 1𝑜 → ∃*𝑔 ∈ (𝐺 GrpHom 𝐺)(𝑔 ∘ (varFGrp𝐼)) = (varFGrp𝐼))
6160adantr 481 . . . . . . . . . . . . . . 15 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → ∃*𝑔 ∈ (𝐺 GrpHom 𝐺)(𝑔 ∘ (varFGrp𝐼)) = (varFGrp𝐼))
6221adantr 481 . . . . . . . . . . . . . . . 16 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → 𝐺 ∈ Grp)
6316idghm 17675 . . . . . . . . . . . . . . . 16 (𝐺 ∈ Grp → ( I ↾ (Base‘𝐺)) ∈ (𝐺 GrpHom 𝐺))
6462, 63syl 17 . . . . . . . . . . . . . . 15 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → ( I ↾ (Base‘𝐺)) ∈ (𝐺 GrpHom 𝐺))
6525adantr 481 . . . . . . . . . . . . . . . 16 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → (varFGrp𝐼):𝐼⟶(Base‘𝐺))
66 fcoi2 6079 . . . . . . . . . . . . . . . 16 ((varFGrp𝐼):𝐼⟶(Base‘𝐺) → (( I ↾ (Base‘𝐺)) ∘ (varFGrp𝐼)) = (varFGrp𝐼))
6765, 66syl 17 . . . . . . . . . . . . . . 15 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → (( I ↾ (Base‘𝐺)) ∘ (varFGrp𝐼)) = (varFGrp𝐼))
6853feqmptd 6249 . . . . . . . . . . . . . . . . 17 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → 𝑓 = (𝑥 ∈ (Base‘𝐺) ↦ (𝑓𝑥)))
69 eqidd 2623 . . . . . . . . . . . . . . . . 17 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)((varFGrp𝐼)‘ 𝐼))) = (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)((varFGrp𝐼)‘ 𝐼))))
70 oveq1 6657 . . . . . . . . . . . . . . . . 17 (𝑛 = (𝑓𝑥) → (𝑛(.g𝐺)((varFGrp𝐼)‘ 𝐼)) = ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼)))
7154, 68, 69, 70fmptco 6396 . . . . . . . . . . . . . . . 16 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → ((𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)((varFGrp𝐼)‘ 𝐼))) ∘ 𝑓) = (𝑥 ∈ (Base‘𝐺) ↦ ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))))
7227adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → ((varFGrp𝐼)‘ 𝐼) ∈ (Base‘𝐺))
73 eqid 2622 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)((varFGrp𝐼)‘ 𝐼))) = (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)((varFGrp𝐼)‘ 𝐼)))
7417, 73, 16mulgghm2 19845 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ Grp ∧ ((varFGrp𝐼)‘ 𝐼) ∈ (Base‘𝐺)) → (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)((varFGrp𝐼)‘ 𝐼))) ∈ (ℤring GrpHom 𝐺))
7562, 72, 74syl2anc 693 . . . . . . . . . . . . . . . . 17 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)((varFGrp𝐼)‘ 𝐼))) ∈ (ℤring GrpHom 𝐺))
76 simprl 794 . . . . . . . . . . . . . . . . 17 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → 𝑓 ∈ (𝐺 GrpHom ℤring))
77 ghmco 17680 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)((varFGrp𝐼)‘ 𝐼))) ∈ (ℤring GrpHom 𝐺) ∧ 𝑓 ∈ (𝐺 GrpHom ℤring)) → ((𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)((varFGrp𝐼)‘ 𝐼))) ∘ 𝑓) ∈ (𝐺 GrpHom 𝐺))
7875, 76, 77syl2anc 693 . . . . . . . . . . . . . . . 16 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → ((𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)((varFGrp𝐼)‘ 𝐼))) ∘ 𝑓) ∈ (𝐺 GrpHom 𝐺))
7971, 78eqeltrrd 2702 . . . . . . . . . . . . . . 15 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → (𝑥 ∈ (Base‘𝐺) ↦ ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))) ∈ (𝐺 GrpHom 𝐺))
8034adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → 𝐼 = { 𝐼})
8180eleq2d 2687 . . . . . . . . . . . . . . . . . . 19 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → (𝑦𝐼𝑦 ∈ { 𝐼}))
82 simprr 796 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)
8382oveq1d 6665 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → ((𝑓‘((varFGrp𝐼)‘ 𝐼))(.g𝐺)((varFGrp𝐼)‘ 𝐼)) = (1(.g𝐺)((varFGrp𝐼)‘ 𝐼)))
8416, 17mulg1 17548 . . . . . . . . . . . . . . . . . . . . . 22 (((varFGrp𝐼)‘ 𝐼) ∈ (Base‘𝐺) → (1(.g𝐺)((varFGrp𝐼)‘ 𝐼)) = ((varFGrp𝐼)‘ 𝐼))
8572, 84syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → (1(.g𝐺)((varFGrp𝐼)‘ 𝐼)) = ((varFGrp𝐼)‘ 𝐼))
8683, 85eqtrd 2656 . . . . . . . . . . . . . . . . . . . 20 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → ((𝑓‘((varFGrp𝐼)‘ 𝐼))(.g𝐺)((varFGrp𝐼)‘ 𝐼)) = ((varFGrp𝐼)‘ 𝐼))
87 elsni 4194 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ { 𝐼} → 𝑦 = 𝐼)
8887fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ { 𝐼} → ((varFGrp𝐼)‘𝑦) = ((varFGrp𝐼)‘ 𝐼))
8988fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ { 𝐼} → (𝑓‘((varFGrp𝐼)‘𝑦)) = (𝑓‘((varFGrp𝐼)‘ 𝐼)))
9089oveq1d 6665 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ { 𝐼} → ((𝑓‘((varFGrp𝐼)‘𝑦))(.g𝐺)((varFGrp𝐼)‘ 𝐼)) = ((𝑓‘((varFGrp𝐼)‘ 𝐼))(.g𝐺)((varFGrp𝐼)‘ 𝐼)))
9190, 88eqeq12d 2637 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ { 𝐼} → (((𝑓‘((varFGrp𝐼)‘𝑦))(.g𝐺)((varFGrp𝐼)‘ 𝐼)) = ((varFGrp𝐼)‘𝑦) ↔ ((𝑓‘((varFGrp𝐼)‘ 𝐼))(.g𝐺)((varFGrp𝐼)‘ 𝐼)) = ((varFGrp𝐼)‘ 𝐼)))
9286, 91syl5ibrcom 237 . . . . . . . . . . . . . . . . . . 19 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → (𝑦 ∈ { 𝐼} → ((𝑓‘((varFGrp𝐼)‘𝑦))(.g𝐺)((varFGrp𝐼)‘ 𝐼)) = ((varFGrp𝐼)‘𝑦)))
9381, 92sylbid 230 . . . . . . . . . . . . . . . . . 18 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → (𝑦𝐼 → ((𝑓‘((varFGrp𝐼)‘𝑦))(.g𝐺)((varFGrp𝐼)‘ 𝐼)) = ((varFGrp𝐼)‘𝑦)))
9493imp 445 . . . . . . . . . . . . . . . . 17 (((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) ∧ 𝑦𝐼) → ((𝑓‘((varFGrp𝐼)‘𝑦))(.g𝐺)((varFGrp𝐼)‘ 𝐼)) = ((varFGrp𝐼)‘𝑦))
9594mpteq2dva 4744 . . . . . . . . . . . . . . . 16 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → (𝑦𝐼 ↦ ((𝑓‘((varFGrp𝐼)‘𝑦))(.g𝐺)((varFGrp𝐼)‘ 𝐼))) = (𝑦𝐼 ↦ ((varFGrp𝐼)‘𝑦)))
9665ffvelrnda 6359 . . . . . . . . . . . . . . . . 17 (((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) ∧ 𝑦𝐼) → ((varFGrp𝐼)‘𝑦) ∈ (Base‘𝐺))
9765feqmptd 6249 . . . . . . . . . . . . . . . . 17 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → (varFGrp𝐼) = (𝑦𝐼 ↦ ((varFGrp𝐼)‘𝑦)))
98 eqidd 2623 . . . . . . . . . . . . . . . . 17 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → (𝑥 ∈ (Base‘𝐺) ↦ ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))) = (𝑥 ∈ (Base‘𝐺) ↦ ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))))
99 fveq2 6191 . . . . . . . . . . . . . . . . . 18 (𝑥 = ((varFGrp𝐼)‘𝑦) → (𝑓𝑥) = (𝑓‘((varFGrp𝐼)‘𝑦)))
10099oveq1d 6665 . . . . . . . . . . . . . . . . 17 (𝑥 = ((varFGrp𝐼)‘𝑦) → ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼)) = ((𝑓‘((varFGrp𝐼)‘𝑦))(.g𝐺)((varFGrp𝐼)‘ 𝐼)))
10196, 97, 98, 100fmptco 6396 . . . . . . . . . . . . . . . 16 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → ((𝑥 ∈ (Base‘𝐺) ↦ ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))) ∘ (varFGrp𝐼)) = (𝑦𝐼 ↦ ((𝑓‘((varFGrp𝐼)‘𝑦))(.g𝐺)((varFGrp𝐼)‘ 𝐼))))
10295, 101, 973eqtr4d 2666 . . . . . . . . . . . . . . 15 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → ((𝑥 ∈ (Base‘𝐺) ↦ ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))) ∘ (varFGrp𝐼)) = (varFGrp𝐼))
103 coeq1 5279 . . . . . . . . . . . . . . . . 17 (𝑔 = ( I ↾ (Base‘𝐺)) → (𝑔 ∘ (varFGrp𝐼)) = (( I ↾ (Base‘𝐺)) ∘ (varFGrp𝐼)))
104103eqeq1d 2624 . . . . . . . . . . . . . . . 16 (𝑔 = ( I ↾ (Base‘𝐺)) → ((𝑔 ∘ (varFGrp𝐼)) = (varFGrp𝐼) ↔ (( I ↾ (Base‘𝐺)) ∘ (varFGrp𝐼)) = (varFGrp𝐼)))
105 coeq1 5279 . . . . . . . . . . . . . . . . 17 (𝑔 = (𝑥 ∈ (Base‘𝐺) ↦ ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))) → (𝑔 ∘ (varFGrp𝐼)) = ((𝑥 ∈ (Base‘𝐺) ↦ ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))) ∘ (varFGrp𝐼)))
106105eqeq1d 2624 . . . . . . . . . . . . . . . 16 (𝑔 = (𝑥 ∈ (Base‘𝐺) ↦ ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))) → ((𝑔 ∘ (varFGrp𝐼)) = (varFGrp𝐼) ↔ ((𝑥 ∈ (Base‘𝐺) ↦ ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))) ∘ (varFGrp𝐼)) = (varFGrp𝐼)))
107104, 106rmoi 3530 . . . . . . . . . . . . . . 15 ((∃*𝑔 ∈ (𝐺 GrpHom 𝐺)(𝑔 ∘ (varFGrp𝐼)) = (varFGrp𝐼) ∧ (( I ↾ (Base‘𝐺)) ∈ (𝐺 GrpHom 𝐺) ∧ (( I ↾ (Base‘𝐺)) ∘ (varFGrp𝐼)) = (varFGrp𝐼)) ∧ ((𝑥 ∈ (Base‘𝐺) ↦ ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))) ∈ (𝐺 GrpHom 𝐺) ∧ ((𝑥 ∈ (Base‘𝐺) ↦ ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))) ∘ (varFGrp𝐼)) = (varFGrp𝐼))) → ( I ↾ (Base‘𝐺)) = (𝑥 ∈ (Base‘𝐺) ↦ ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))))
10861, 64, 67, 79, 102, 107syl122anc 1335 . . . . . . . . . . . . . 14 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → ( I ↾ (Base‘𝐺)) = (𝑥 ∈ (Base‘𝐺) ↦ ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))))
10956, 108syl5eq 2668 . . . . . . . . . . . . 13 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → (𝑥 ∈ (Base‘𝐺) ↦ 𝑥) = (𝑥 ∈ (Base‘𝐺) ↦ ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))))
110 mpteqb 6299 . . . . . . . . . . . . . 14 (∀𝑥 ∈ (Base‘𝐺)𝑥 ∈ (Base‘𝐺) → ((𝑥 ∈ (Base‘𝐺) ↦ 𝑥) = (𝑥 ∈ (Base‘𝐺) ↦ ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))) ↔ ∀𝑥 ∈ (Base‘𝐺)𝑥 = ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))))
111 id 22 . . . . . . . . . . . . . 14 (𝑥 ∈ (Base‘𝐺) → 𝑥 ∈ (Base‘𝐺))
112110, 111mprg 2926 . . . . . . . . . . . . 13 ((𝑥 ∈ (Base‘𝐺) ↦ 𝑥) = (𝑥 ∈ (Base‘𝐺) ↦ ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))) ↔ ∀𝑥 ∈ (Base‘𝐺)𝑥 = ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼)))
113109, 112sylib 208 . . . . . . . . . . . 12 ((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → ∀𝑥 ∈ (Base‘𝐺)𝑥 = ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼)))
114113r19.21bi 2932 . . . . . . . . . . 11 (((𝐼 ≈ 1𝑜 ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑥 = ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼)))
115114an32s 846 . . . . . . . . . 10 (((𝐼 ≈ 1𝑜𝑥 ∈ (Base‘𝐺)) ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → 𝑥 = ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼)))
11670eqeq2d 2632 . . . . . . . . . . 11 (𝑛 = (𝑓𝑥) → (𝑥 = (𝑛(.g𝐺)((varFGrp𝐼)‘ 𝐼)) ↔ 𝑥 = ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))))
117116rspcev 3309 . . . . . . . . . 10 (((𝑓𝑥) ∈ ℤ ∧ 𝑥 = ((𝑓𝑥)(.g𝐺)((varFGrp𝐼)‘ 𝐼))) → ∃𝑛 ∈ ℤ 𝑥 = (𝑛(.g𝐺)((varFGrp𝐼)‘ 𝐼)))
11855, 115, 117syl2anc 693 . . . . . . . . 9 (((𝐼 ≈ 1𝑜𝑥 ∈ (Base‘𝐺)) ∧ (𝑓 ∈ (𝐺 GrpHom ℤring) ∧ (𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1)) → ∃𝑛 ∈ ℤ 𝑥 = (𝑛(.g𝐺)((varFGrp𝐼)‘ 𝐼)))
119118expr 643 . . . . . . . 8 (((𝐼 ≈ 1𝑜𝑥 ∈ (Base‘𝐺)) ∧ 𝑓 ∈ (𝐺 GrpHom ℤring)) → ((𝑓‘((varFGrp𝐼)‘ 𝐼)) = 1 → ∃𝑛 ∈ ℤ 𝑥 = (𝑛(.g𝐺)((varFGrp𝐼)‘ 𝐼))))
12051, 119syld 47 . . . . . . 7 (((𝐼 ≈ 1𝑜𝑥 ∈ (Base‘𝐺)) ∧ 𝑓 ∈ (𝐺 GrpHom ℤring)) → ((𝑓 ∘ (varFGrp𝐼)) = {⟨ 𝐼, 1⟩} → ∃𝑛 ∈ ℤ 𝑥 = (𝑛(.g𝐺)((varFGrp𝐼)‘ 𝐼))))
121120rexlimdva 3031 . . . . . 6 ((𝐼 ≈ 1𝑜𝑥 ∈ (Base‘𝐺)) → (∃𝑓 ∈ (𝐺 GrpHom ℤring)(𝑓 ∘ (varFGrp𝐼)) = {⟨ 𝐼, 1⟩} → ∃𝑛 ∈ ℤ 𝑥 = (𝑛(.g𝐺)((varFGrp𝐼)‘ 𝐼))))
12242, 121mpd 15 . . . . 5 ((𝐼 ≈ 1𝑜𝑥 ∈ (Base‘𝐺)) → ∃𝑛 ∈ ℤ 𝑥 = (𝑛(.g𝐺)((varFGrp𝐼)‘ 𝐼)))
12316, 17, 21, 27, 122iscygd 18289 . . . 4 (𝐼 ≈ 1𝑜𝐺 ∈ CycGrp)
12415, 123jaoi 394 . . 3 ((𝐼 ≺ 1𝑜𝐼 ≈ 1𝑜) → 𝐺 ∈ CycGrp)
1251, 124sylbi 207 . 2 (𝐼 ≼ 1𝑜𝐺 ∈ CycGrp)
126 cygabl 18292 . . 3 (𝐺 ∈ CycGrp → 𝐺 ∈ Abel)
1273frgpnabl 18278 . . . . 5 (1𝑜𝐼 → ¬ 𝐺 ∈ Abel)
128127con2i 134 . . . 4 (𝐺 ∈ Abel → ¬ 1𝑜𝐼)
129 ablgrp 18198 . . . . . 6 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
130 eqid 2622 . . . . . . 7 (0g𝐺) = (0g𝐺)
13116, 130grpidcl 17450 . . . . . 6 (𝐺 ∈ Grp → (0g𝐺) ∈ (Base‘𝐺))
1323, 16elbasfv 15920 . . . . . 6 ((0g𝐺) ∈ (Base‘𝐺) → 𝐼 ∈ V)
133129, 131, 1323syl 18 . . . . 5 (𝐺 ∈ Abel → 𝐼 ∈ V)
134 1onn 7719 . . . . . 6 1𝑜 ∈ ω
135 nnfi 8153 . . . . . 6 (1𝑜 ∈ ω → 1𝑜 ∈ Fin)
136134, 135ax-mp 5 . . . . 5 1𝑜 ∈ Fin
137 fidomtri2 8820 . . . . 5 ((𝐼 ∈ V ∧ 1𝑜 ∈ Fin) → (𝐼 ≼ 1𝑜 ↔ ¬ 1𝑜𝐼))
138133, 136, 137sylancl 694 . . . 4 (𝐺 ∈ Abel → (𝐼 ≼ 1𝑜 ↔ ¬ 1𝑜𝐼))
139128, 138mpbird 247 . . 3 (𝐺 ∈ Abel → 𝐼 ≼ 1𝑜)
140126, 139syl 17 . 2 (𝐺 ∈ CycGrp → 𝐼 ≼ 1𝑜)
141125, 140impbii 199 1 (𝐼 ≼ 1𝑜𝐺 ∈ CycGrp)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  ∃!wreu 2914  ∃*wrmo 2915  Vcvv 3200  c0 3915  {csn 4177  cop 4183   cuni 4436   class class class wbr 4653  cmpt 4729   I cid 5023  cres 5116  ccom 5118  wf 5884  cfv 5888  (class class class)co 6650  ωcom 7065  1𝑜c1o 7553  cen 7952  cdom 7953  csdm 7954  Fincfn 7955  1c1 9937  cz 11377  Basecbs 15857  0gc0g 16100  Grpcgrp 17422  .gcmg 17540   GrpHom cghm 17657   ~FG cefg 18119  freeGrpcfrgp 18120  varFGrpcvrgp 18121  Abelcabl 18194  CycGrpccyg 18279  ringzring 19818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-splice 13304  df-reverse 13305  df-s2 13593  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-gsum 16103  df-imas 16168  df-qus 16169  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-frmd 17386  df-vrmd 17387  df-grp 17425  df-minusg 17426  df-mulg 17541  df-subg 17591  df-ghm 17658  df-efg 18122  df-frgp 18123  df-vrgp 18124  df-cmn 18195  df-abl 18196  df-cyg 18280  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-subrg 18778  df-cnfld 19747  df-zring 19819
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator