![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sdomnen | Structured version Visualization version GIF version |
Description: Strict dominance implies non-equinumerosity. (Contributed by NM, 10-Jun-1998.) |
Ref | Expression |
---|---|
sdomnen | ⊢ (𝐴 ≺ 𝐵 → ¬ 𝐴 ≈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brsdom 7978 | . 2 ⊢ (𝐴 ≺ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵)) | |
2 | 1 | simprbi 480 | 1 ⊢ (𝐴 ≺ 𝐵 → ¬ 𝐴 ≈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 class class class wbr 4653 ≈ cen 7952 ≼ cdom 7953 ≺ csdm 7954 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-dif 3577 df-br 4654 df-sdom 7958 |
This theorem is referenced by: bren2 7986 domdifsn 8043 sdomnsym 8085 domnsym 8086 sdomirr 8097 php5 8148 sucdom2 8156 pssinf 8170 f1finf1o 8187 isfinite2 8218 cardom 8812 pm54.43 8826 pr2ne 8828 alephdom 8904 cdainflem 9013 ackbij1b 9061 isfin4-3 9137 fin23lem25 9146 fin67 9217 axcclem 9279 canthp1lem2 9475 gchinf 9479 pwfseqlem4 9484 tskssel 9579 1nprm 15392 en2top 20789 rp-isfinite6 37864 |
Copyright terms: Public domain | W3C validator |