MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brfvopab Structured version   Visualization version   GIF version

Theorem brfvopab 6700
Description: The classes involved in a binary relation of a function value which is an ordered-pair class abstraction are sets. (Contributed by AV, 7-Jan-2021.)
Hypothesis
Ref Expression
brfvopab.1 (𝑋 ∈ V → (𝐹𝑋) = {⟨𝑦, 𝑧⟩ ∣ 𝜑})
Assertion
Ref Expression
brfvopab (𝐴(𝐹𝑋)𝐵 → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V))

Proof of Theorem brfvopab
StepHypRef Expression
1 brfvopab.1 . . . . . . 7 (𝑋 ∈ V → (𝐹𝑋) = {⟨𝑦, 𝑧⟩ ∣ 𝜑})
21breqd 4664 . . . . . 6 (𝑋 ∈ V → (𝐴(𝐹𝑋)𝐵𝐴{⟨𝑦, 𝑧⟩ ∣ 𝜑}𝐵))
3 brabv 6699 . . . . . 6 (𝐴{⟨𝑦, 𝑧⟩ ∣ 𝜑}𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
42, 3syl6bi 243 . . . . 5 (𝑋 ∈ V → (𝐴(𝐹𝑋)𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)))
54imdistani 726 . . . 4 ((𝑋 ∈ V ∧ 𝐴(𝐹𝑋)𝐵) → (𝑋 ∈ V ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V)))
6 3anass 1042 . . . 4 ((𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝑋 ∈ V ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V)))
75, 6sylibr 224 . . 3 ((𝑋 ∈ V ∧ 𝐴(𝐹𝑋)𝐵) → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V))
87ex 450 . 2 (𝑋 ∈ V → (𝐴(𝐹𝑋)𝐵 → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V)))
9 fvprc 6185 . . 3 𝑋 ∈ V → (𝐹𝑋) = ∅)
10 breq 4655 . . . 4 ((𝐹𝑋) = ∅ → (𝐴(𝐹𝑋)𝐵𝐴𝐵))
11 br0 4701 . . . . 5 ¬ 𝐴𝐵
1211pm2.21i 116 . . . 4 (𝐴𝐵 → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V))
1310, 12syl6bi 243 . . 3 ((𝐹𝑋) = ∅ → (𝐴(𝐹𝑋)𝐵 → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V)))
149, 13syl 17 . 2 𝑋 ∈ V → (𝐴(𝐹𝑋)𝐵 → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V)))
158, 14pm2.61i 176 1 (𝐴(𝐹𝑋)𝐵 → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200  c0 3915   class class class wbr 4653  {copab 4712  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-iota 5851  df-fv 5896
This theorem is referenced by:  wlkprop  26507  wlkv  26508  isupwlkg  41718
  Copyright terms: Public domain W3C validator