![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isupwlkg | Structured version Visualization version GIF version |
Description: Generalisation of isupwlk 41717: Conditions for two classes to represent a simple walk. (Contributed by AV, 5-Nov-2021.) |
Ref | Expression |
---|---|
upwlksfval.v | ⊢ 𝑉 = (Vtx‘𝐺) |
upwlksfval.i | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
isupwlkg | ⊢ (𝐺 ∈ 𝑊 → (𝐹(UPWalks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upwlksfval.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | upwlksfval.i | . . . . 5 ⊢ 𝐼 = (iEdg‘𝐺) | |
3 | 1, 2 | upwlksfval 41716 | . . . 4 ⊢ (𝐺 ∈ V → (UPWalks‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom 𝐼 ∧ 𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))(𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})}) |
4 | 3 | brfvopab 6700 | . . 3 ⊢ (𝐹(UPWalks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)) |
5 | 4 | a1i 11 | . 2 ⊢ (𝐺 ∈ 𝑊 → (𝐹(UPWalks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))) |
6 | elex 3212 | . . . . 5 ⊢ (𝐺 ∈ 𝑊 → 𝐺 ∈ V) | |
7 | elex 3212 | . . . . . . 7 ⊢ (𝐹 ∈ Word dom 𝐼 → 𝐹 ∈ V) | |
8 | ovex 6678 | . . . . . . . . 9 ⊢ (0...(#‘𝐹)) ∈ V | |
9 | 1 | fvexi 6202 | . . . . . . . . 9 ⊢ 𝑉 ∈ V |
10 | 8, 9 | fpm 7890 | . . . . . . . 8 ⊢ (𝑃:(0...(#‘𝐹))⟶𝑉 → 𝑃 ∈ (𝑉 ↑pm (0...(#‘𝐹)))) |
11 | 10 | elexd 3214 | . . . . . . 7 ⊢ (𝑃:(0...(#‘𝐹))⟶𝑉 → 𝑃 ∈ V) |
12 | 7, 11 | anim12i 590 | . . . . . 6 ⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(#‘𝐹))⟶𝑉) → (𝐹 ∈ V ∧ 𝑃 ∈ V)) |
13 | 12 | 3adant3 1081 | . . . . 5 ⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) → (𝐹 ∈ V ∧ 𝑃 ∈ V)) |
14 | 6, 13 | anim12i 590 | . . . 4 ⊢ ((𝐺 ∈ 𝑊 ∧ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) → (𝐺 ∈ V ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))) |
15 | 14 | ex 450 | . . 3 ⊢ (𝐺 ∈ 𝑊 → ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) → (𝐺 ∈ V ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))) |
16 | 3anass 1042 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ↔ (𝐺 ∈ V ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))) | |
17 | 15, 16 | syl6ibr 242 | . 2 ⊢ (𝐺 ∈ 𝑊 → ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))) |
18 | 1, 2 | isupwlk 41717 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(UPWalks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) |
19 | 18 | a1i 11 | . 2 ⊢ (𝐺 ∈ 𝑊 → ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(UPWalks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})))) |
20 | 5, 17, 19 | pm5.21ndd 369 | 1 ⊢ (𝐺 ∈ 𝑊 → (𝐹(UPWalks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ∀wral 2912 Vcvv 3200 {cpr 4179 class class class wbr 4653 dom cdm 5114 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 ↑pm cpm 7858 0cc0 9936 1c1 9937 + caddc 9939 ...cfz 12326 ..^cfzo 12465 #chash 13117 Word cword 13291 Vtxcvtx 25874 iEdgciedg 25875 UPWalkscupwlks 41714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-er 7742 df-map 7859 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-fzo 12466 df-hash 13118 df-word 13299 df-upwlks 41715 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |