MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brfvopab Structured version   Visualization version   Unicode version

Theorem brfvopab 6700
Description: The classes involved in a binary relation of a function value which is an ordered-pair class abstraction are sets. (Contributed by AV, 7-Jan-2021.)
Hypothesis
Ref Expression
brfvopab.1  |-  ( X  e.  _V  ->  ( F `  X )  =  { <. y ,  z
>.  |  ph } )
Assertion
Ref Expression
brfvopab  |-  ( A ( F `  X
) B  ->  ( X  e.  _V  /\  A  e.  _V  /\  B  e. 
_V ) )

Proof of Theorem brfvopab
StepHypRef Expression
1 brfvopab.1 . . . . . . 7  |-  ( X  e.  _V  ->  ( F `  X )  =  { <. y ,  z
>.  |  ph } )
21breqd 4664 . . . . . 6  |-  ( X  e.  _V  ->  ( A ( F `  X ) B  <->  A { <. y ,  z >.  |  ph } B ) )
3 brabv 6699 . . . . . 6  |-  ( A { <. y ,  z
>.  |  ph } B  ->  ( A  e.  _V  /\  B  e.  _V )
)
42, 3syl6bi 243 . . . . 5  |-  ( X  e.  _V  ->  ( A ( F `  X ) B  -> 
( A  e.  _V  /\  B  e.  _V )
) )
54imdistani 726 . . . 4  |-  ( ( X  e.  _V  /\  A ( F `  X ) B )  ->  ( X  e. 
_V  /\  ( A  e.  _V  /\  B  e. 
_V ) ) )
6 3anass 1042 . . . 4  |-  ( ( X  e.  _V  /\  A  e.  _V  /\  B  e.  _V )  <->  ( X  e.  _V  /\  ( A  e.  _V  /\  B  e.  _V ) ) )
75, 6sylibr 224 . . 3  |-  ( ( X  e.  _V  /\  A ( F `  X ) B )  ->  ( X  e. 
_V  /\  A  e.  _V  /\  B  e.  _V ) )
87ex 450 . 2  |-  ( X  e.  _V  ->  ( A ( F `  X ) B  -> 
( X  e.  _V  /\  A  e.  _V  /\  B  e.  _V )
) )
9 fvprc 6185 . . 3  |-  ( -.  X  e.  _V  ->  ( F `  X )  =  (/) )
10 breq 4655 . . . 4  |-  ( ( F `  X )  =  (/)  ->  ( A ( F `  X
) B  <->  A (/) B ) )
11 br0 4701 . . . . 5  |-  -.  A (/) B
1211pm2.21i 116 . . . 4  |-  ( A
(/) B  ->  ( X  e.  _V  /\  A  e.  _V  /\  B  e. 
_V ) )
1310, 12syl6bi 243 . . 3  |-  ( ( F `  X )  =  (/)  ->  ( A ( F `  X
) B  ->  ( X  e.  _V  /\  A  e.  _V  /\  B  e. 
_V ) ) )
149, 13syl 17 . 2  |-  ( -.  X  e.  _V  ->  ( A ( F `  X ) B  -> 
( X  e.  _V  /\  A  e.  _V  /\  B  e.  _V )
) )
158, 14pm2.61i 176 1  |-  ( A ( F `  X
) B  ->  ( X  e.  _V  /\  A  e.  _V  /\  B  e. 
_V ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200   (/)c0 3915   class class class wbr 4653   {copab 4712   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-iota 5851  df-fv 5896
This theorem is referenced by:  wlkprop  26507  wlkv  26508  isupwlkg  41718
  Copyright terms: Public domain W3C validator