Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caofcan Structured version   Visualization version   GIF version

Theorem caofcan 38522
Description: Transfer a cancellation law like mulcan 10664 to the function operation. (Contributed by Steve Rodriguez, 16-Nov-2015.)
Hypotheses
Ref Expression
caofcan.1 (𝜑𝐴𝑉)
caofcan.2 (𝜑𝐹:𝐴𝑇)
caofcan.3 (𝜑𝐺:𝐴𝑆)
caofcan.4 (𝜑𝐻:𝐴𝑆)
caofcan.5 ((𝜑 ∧ (𝑥𝑇𝑦𝑆𝑧𝑆)) → ((𝑥𝑅𝑦) = (𝑥𝑅𝑧) ↔ 𝑦 = 𝑧))
Assertion
Ref Expression
caofcan (𝜑 → ((𝐹𝑓 𝑅𝐺) = (𝐹𝑓 𝑅𝐻) ↔ 𝐺 = 𝐻))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐹   𝑥,𝐺,𝑦,𝑧   𝑥,𝐻,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem caofcan
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 caofcan.2 . . . . . . 7 (𝜑𝐹:𝐴𝑇)
2 ffn 6045 . . . . . . 7 (𝐹:𝐴𝑇𝐹 Fn 𝐴)
31, 2syl 17 . . . . . 6 (𝜑𝐹 Fn 𝐴)
4 caofcan.3 . . . . . . 7 (𝜑𝐺:𝐴𝑆)
5 ffn 6045 . . . . . . 7 (𝐺:𝐴𝑆𝐺 Fn 𝐴)
64, 5syl 17 . . . . . 6 (𝜑𝐺 Fn 𝐴)
7 caofcan.1 . . . . . 6 (𝜑𝐴𝑉)
8 inidm 3822 . . . . . 6 (𝐴𝐴) = 𝐴
9 eqidd 2623 . . . . . 6 ((𝜑𝑤𝐴) → (𝐹𝑤) = (𝐹𝑤))
10 eqidd 2623 . . . . . 6 ((𝜑𝑤𝐴) → (𝐺𝑤) = (𝐺𝑤))
113, 6, 7, 7, 8, 9, 10ofval 6906 . . . . 5 ((𝜑𝑤𝐴) → ((𝐹𝑓 𝑅𝐺)‘𝑤) = ((𝐹𝑤)𝑅(𝐺𝑤)))
12 caofcan.4 . . . . . . 7 (𝜑𝐻:𝐴𝑆)
13 ffn 6045 . . . . . . 7 (𝐻:𝐴𝑆𝐻 Fn 𝐴)
1412, 13syl 17 . . . . . 6 (𝜑𝐻 Fn 𝐴)
15 eqidd 2623 . . . . . 6 ((𝜑𝑤𝐴) → (𝐻𝑤) = (𝐻𝑤))
163, 14, 7, 7, 8, 9, 15ofval 6906 . . . . 5 ((𝜑𝑤𝐴) → ((𝐹𝑓 𝑅𝐻)‘𝑤) = ((𝐹𝑤)𝑅(𝐻𝑤)))
1711, 16eqeq12d 2637 . . . 4 ((𝜑𝑤𝐴) → (((𝐹𝑓 𝑅𝐺)‘𝑤) = ((𝐹𝑓 𝑅𝐻)‘𝑤) ↔ ((𝐹𝑤)𝑅(𝐺𝑤)) = ((𝐹𝑤)𝑅(𝐻𝑤))))
18 simpl 473 . . . . 5 ((𝜑𝑤𝐴) → 𝜑)
191ffvelrnda 6359 . . . . 5 ((𝜑𝑤𝐴) → (𝐹𝑤) ∈ 𝑇)
204ffvelrnda 6359 . . . . 5 ((𝜑𝑤𝐴) → (𝐺𝑤) ∈ 𝑆)
2112ffvelrnda 6359 . . . . 5 ((𝜑𝑤𝐴) → (𝐻𝑤) ∈ 𝑆)
22 caofcan.5 . . . . . 6 ((𝜑 ∧ (𝑥𝑇𝑦𝑆𝑧𝑆)) → ((𝑥𝑅𝑦) = (𝑥𝑅𝑧) ↔ 𝑦 = 𝑧))
2322caovcang 6835 . . . . 5 ((𝜑 ∧ ((𝐹𝑤) ∈ 𝑇 ∧ (𝐺𝑤) ∈ 𝑆 ∧ (𝐻𝑤) ∈ 𝑆)) → (((𝐹𝑤)𝑅(𝐺𝑤)) = ((𝐹𝑤)𝑅(𝐻𝑤)) ↔ (𝐺𝑤) = (𝐻𝑤)))
2418, 19, 20, 21, 23syl13anc 1328 . . . 4 ((𝜑𝑤𝐴) → (((𝐹𝑤)𝑅(𝐺𝑤)) = ((𝐹𝑤)𝑅(𝐻𝑤)) ↔ (𝐺𝑤) = (𝐻𝑤)))
2517, 24bitrd 268 . . 3 ((𝜑𝑤𝐴) → (((𝐹𝑓 𝑅𝐺)‘𝑤) = ((𝐹𝑓 𝑅𝐻)‘𝑤) ↔ (𝐺𝑤) = (𝐻𝑤)))
2625ralbidva 2985 . 2 (𝜑 → (∀𝑤𝐴 ((𝐹𝑓 𝑅𝐺)‘𝑤) = ((𝐹𝑓 𝑅𝐻)‘𝑤) ↔ ∀𝑤𝐴 (𝐺𝑤) = (𝐻𝑤)))
273, 6, 7, 7, 8offn 6908 . . 3 (𝜑 → (𝐹𝑓 𝑅𝐺) Fn 𝐴)
283, 14, 7, 7, 8offn 6908 . . 3 (𝜑 → (𝐹𝑓 𝑅𝐻) Fn 𝐴)
29 eqfnfv 6311 . . 3 (((𝐹𝑓 𝑅𝐺) Fn 𝐴 ∧ (𝐹𝑓 𝑅𝐻) Fn 𝐴) → ((𝐹𝑓 𝑅𝐺) = (𝐹𝑓 𝑅𝐻) ↔ ∀𝑤𝐴 ((𝐹𝑓 𝑅𝐺)‘𝑤) = ((𝐹𝑓 𝑅𝐻)‘𝑤)))
3027, 28, 29syl2anc 693 . 2 (𝜑 → ((𝐹𝑓 𝑅𝐺) = (𝐹𝑓 𝑅𝐻) ↔ ∀𝑤𝐴 ((𝐹𝑓 𝑅𝐺)‘𝑤) = ((𝐹𝑓 𝑅𝐻)‘𝑤)))
31 eqfnfv 6311 . . 3 ((𝐺 Fn 𝐴𝐻 Fn 𝐴) → (𝐺 = 𝐻 ↔ ∀𝑤𝐴 (𝐺𝑤) = (𝐻𝑤)))
326, 14, 31syl2anc 693 . 2 (𝜑 → (𝐺 = 𝐻 ↔ ∀𝑤𝐴 (𝐺𝑤) = (𝐻𝑤)))
3326, 30, 323bitr4d 300 1 (𝜑 → ((𝐹𝑓 𝑅𝐺) = (𝐹𝑓 𝑅𝐻) ↔ 𝐺 = 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  𝑓 cof 6895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator