![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > carden2a | Structured version Visualization version GIF version |
Description: If two sets have equal nonzero cardinalities, then they are equinumerous. (This assertion and carden2b 8793 are meant to replace carden 9373 in ZF without AC.) (Contributed by Mario Carneiro, 9-Jan-2013.) |
Ref | Expression |
---|---|
carden2a | ⊢ (((card‘𝐴) = (card‘𝐵) ∧ (card‘𝐴) ≠ ∅) → 𝐴 ≈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2795 | . 2 ⊢ ((card‘𝐴) ≠ ∅ ↔ ¬ (card‘𝐴) = ∅) | |
2 | ndmfv 6218 | . . . . . . 7 ⊢ (¬ 𝐵 ∈ dom card → (card‘𝐵) = ∅) | |
3 | eqeq1 2626 | . . . . . . 7 ⊢ ((card‘𝐴) = (card‘𝐵) → ((card‘𝐴) = ∅ ↔ (card‘𝐵) = ∅)) | |
4 | 2, 3 | syl5ibr 236 | . . . . . 6 ⊢ ((card‘𝐴) = (card‘𝐵) → (¬ 𝐵 ∈ dom card → (card‘𝐴) = ∅)) |
5 | 4 | con1d 139 | . . . . 5 ⊢ ((card‘𝐴) = (card‘𝐵) → (¬ (card‘𝐴) = ∅ → 𝐵 ∈ dom card)) |
6 | 5 | imp 445 | . . . 4 ⊢ (((card‘𝐴) = (card‘𝐵) ∧ ¬ (card‘𝐴) = ∅) → 𝐵 ∈ dom card) |
7 | cardid2 8779 | . . . 4 ⊢ (𝐵 ∈ dom card → (card‘𝐵) ≈ 𝐵) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ (((card‘𝐴) = (card‘𝐵) ∧ ¬ (card‘𝐴) = ∅) → (card‘𝐵) ≈ 𝐵) |
9 | cardid2 8779 | . . . . . . 7 ⊢ (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴) | |
10 | ndmfv 6218 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ dom card → (card‘𝐴) = ∅) | |
11 | 9, 10 | nsyl4 156 | . . . . . 6 ⊢ (¬ (card‘𝐴) = ∅ → (card‘𝐴) ≈ 𝐴) |
12 | 11 | ensymd 8007 | . . . . 5 ⊢ (¬ (card‘𝐴) = ∅ → 𝐴 ≈ (card‘𝐴)) |
13 | breq2 4657 | . . . . . 6 ⊢ ((card‘𝐴) = (card‘𝐵) → (𝐴 ≈ (card‘𝐴) ↔ 𝐴 ≈ (card‘𝐵))) | |
14 | entr 8008 | . . . . . . 7 ⊢ ((𝐴 ≈ (card‘𝐵) ∧ (card‘𝐵) ≈ 𝐵) → 𝐴 ≈ 𝐵) | |
15 | 14 | ex 450 | . . . . . 6 ⊢ (𝐴 ≈ (card‘𝐵) → ((card‘𝐵) ≈ 𝐵 → 𝐴 ≈ 𝐵)) |
16 | 13, 15 | syl6bi 243 | . . . . 5 ⊢ ((card‘𝐴) = (card‘𝐵) → (𝐴 ≈ (card‘𝐴) → ((card‘𝐵) ≈ 𝐵 → 𝐴 ≈ 𝐵))) |
17 | 12, 16 | syl5 34 | . . . 4 ⊢ ((card‘𝐴) = (card‘𝐵) → (¬ (card‘𝐴) = ∅ → ((card‘𝐵) ≈ 𝐵 → 𝐴 ≈ 𝐵))) |
18 | 17 | imp 445 | . . 3 ⊢ (((card‘𝐴) = (card‘𝐵) ∧ ¬ (card‘𝐴) = ∅) → ((card‘𝐵) ≈ 𝐵 → 𝐴 ≈ 𝐵)) |
19 | 8, 18 | mpd 15 | . 2 ⊢ (((card‘𝐴) = (card‘𝐵) ∧ ¬ (card‘𝐴) = ∅) → 𝐴 ≈ 𝐵) |
20 | 1, 19 | sylan2b 492 | 1 ⊢ (((card‘𝐴) = (card‘𝐵) ∧ (card‘𝐴) ≠ ∅) → 𝐴 ≈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ∅c0 3915 class class class wbr 4653 dom cdm 5114 ‘cfv 5888 ≈ cen 7952 cardccrd 8761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-er 7742 df-en 7956 df-card 8765 |
This theorem is referenced by: card1 8794 |
Copyright terms: Public domain | W3C validator |