![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemk40 | Structured version Visualization version GIF version |
Description: TODO: fix comment. (Contributed by NM, 31-Jul-2013.) |
Ref | Expression |
---|---|
cdlemk40.x | ⊢ 𝑋 = (℩𝑧 ∈ 𝑇 𝜑) |
cdlemk40.u | ⊢ 𝑈 = (𝑔 ∈ 𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋)) |
Ref | Expression |
---|---|
cdlemk40 | ⊢ (𝐺 ∈ 𝑇 → (𝑈‘𝐺) = if(𝐹 = 𝑁, 𝐺, ⦋𝐺 / 𝑔⦌𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3203 | . . . . 5 ⊢ 𝑔 ∈ V | |
2 | cdlemk40.x | . . . . . 6 ⊢ 𝑋 = (℩𝑧 ∈ 𝑇 𝜑) | |
3 | riotaex 6615 | . . . . . 6 ⊢ (℩𝑧 ∈ 𝑇 𝜑) ∈ V | |
4 | 2, 3 | eqeltri 2697 | . . . . 5 ⊢ 𝑋 ∈ V |
5 | 1, 4 | ifex 4156 | . . . 4 ⊢ if(𝐹 = 𝑁, 𝑔, 𝑋) ∈ V |
6 | 5 | csbex 4793 | . . 3 ⊢ ⦋𝐺 / 𝑔⦌if(𝐹 = 𝑁, 𝑔, 𝑋) ∈ V |
7 | cdlemk40.u | . . . 4 ⊢ 𝑈 = (𝑔 ∈ 𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋)) | |
8 | 7 | fvmpts 6285 | . . 3 ⊢ ((𝐺 ∈ 𝑇 ∧ ⦋𝐺 / 𝑔⦌if(𝐹 = 𝑁, 𝑔, 𝑋) ∈ V) → (𝑈‘𝐺) = ⦋𝐺 / 𝑔⦌if(𝐹 = 𝑁, 𝑔, 𝑋)) |
9 | 6, 8 | mpan2 707 | . 2 ⊢ (𝐺 ∈ 𝑇 → (𝑈‘𝐺) = ⦋𝐺 / 𝑔⦌if(𝐹 = 𝑁, 𝑔, 𝑋)) |
10 | csbif 4138 | . . 3 ⊢ ⦋𝐺 / 𝑔⦌if(𝐹 = 𝑁, 𝑔, 𝑋) = if([𝐺 / 𝑔]𝐹 = 𝑁, ⦋𝐺 / 𝑔⦌𝑔, ⦋𝐺 / 𝑔⦌𝑋) | |
11 | sbcg 3503 | . . . 4 ⊢ (𝐺 ∈ 𝑇 → ([𝐺 / 𝑔]𝐹 = 𝑁 ↔ 𝐹 = 𝑁)) | |
12 | csbvarg 4003 | . . . 4 ⊢ (𝐺 ∈ 𝑇 → ⦋𝐺 / 𝑔⦌𝑔 = 𝐺) | |
13 | 11, 12 | ifbieq1d 4109 | . . 3 ⊢ (𝐺 ∈ 𝑇 → if([𝐺 / 𝑔]𝐹 = 𝑁, ⦋𝐺 / 𝑔⦌𝑔, ⦋𝐺 / 𝑔⦌𝑋) = if(𝐹 = 𝑁, 𝐺, ⦋𝐺 / 𝑔⦌𝑋)) |
14 | 10, 13 | syl5eq 2668 | . 2 ⊢ (𝐺 ∈ 𝑇 → ⦋𝐺 / 𝑔⦌if(𝐹 = 𝑁, 𝑔, 𝑋) = if(𝐹 = 𝑁, 𝐺, ⦋𝐺 / 𝑔⦌𝑋)) |
15 | 9, 14 | eqtrd 2656 | 1 ⊢ (𝐺 ∈ 𝑇 → (𝑈‘𝐺) = if(𝐹 = 𝑁, 𝐺, ⦋𝐺 / 𝑔⦌𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 Vcvv 3200 [wsbc 3435 ⦋csb 3533 ifcif 4086 ↦ cmpt 4729 ‘cfv 5888 ℩crio 6610 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-riota 6611 |
This theorem is referenced by: cdlemk40t 36206 cdlemk40f 36207 |
Copyright terms: Public domain | W3C validator |