Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk40 Structured version   Visualization version   GIF version

Theorem cdlemk40 36205
Description: TODO: fix comment. (Contributed by NM, 31-Jul-2013.)
Hypotheses
Ref Expression
cdlemk40.x 𝑋 = (𝑧𝑇 𝜑)
cdlemk40.u 𝑈 = (𝑔𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋))
Assertion
Ref Expression
cdlemk40 (𝐺𝑇 → (𝑈𝐺) = if(𝐹 = 𝑁, 𝐺, 𝐺 / 𝑔𝑋))
Distinct variable groups:   𝑔,𝐹   𝑔,𝑁   𝑇,𝑔
Allowed substitution hints:   𝜑(𝑧,𝑔)   𝑇(𝑧)   𝑈(𝑧,𝑔)   𝐹(𝑧)   𝐺(𝑧,𝑔)   𝑁(𝑧)   𝑋(𝑧,𝑔)

Proof of Theorem cdlemk40
StepHypRef Expression
1 vex 3203 . . . . 5 𝑔 ∈ V
2 cdlemk40.x . . . . . 6 𝑋 = (𝑧𝑇 𝜑)
3 riotaex 6615 . . . . . 6 (𝑧𝑇 𝜑) ∈ V
42, 3eqeltri 2697 . . . . 5 𝑋 ∈ V
51, 4ifex 4156 . . . 4 if(𝐹 = 𝑁, 𝑔, 𝑋) ∈ V
65csbex 4793 . . 3 𝐺 / 𝑔if(𝐹 = 𝑁, 𝑔, 𝑋) ∈ V
7 cdlemk40.u . . . 4 𝑈 = (𝑔𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋))
87fvmpts 6285 . . 3 ((𝐺𝑇𝐺 / 𝑔if(𝐹 = 𝑁, 𝑔, 𝑋) ∈ V) → (𝑈𝐺) = 𝐺 / 𝑔if(𝐹 = 𝑁, 𝑔, 𝑋))
96, 8mpan2 707 . 2 (𝐺𝑇 → (𝑈𝐺) = 𝐺 / 𝑔if(𝐹 = 𝑁, 𝑔, 𝑋))
10 csbif 4138 . . 3 𝐺 / 𝑔if(𝐹 = 𝑁, 𝑔, 𝑋) = if([𝐺 / 𝑔]𝐹 = 𝑁, 𝐺 / 𝑔𝑔, 𝐺 / 𝑔𝑋)
11 sbcg 3503 . . . 4 (𝐺𝑇 → ([𝐺 / 𝑔]𝐹 = 𝑁𝐹 = 𝑁))
12 csbvarg 4003 . . . 4 (𝐺𝑇𝐺 / 𝑔𝑔 = 𝐺)
1311, 12ifbieq1d 4109 . . 3 (𝐺𝑇 → if([𝐺 / 𝑔]𝐹 = 𝑁, 𝐺 / 𝑔𝑔, 𝐺 / 𝑔𝑋) = if(𝐹 = 𝑁, 𝐺, 𝐺 / 𝑔𝑋))
1410, 13syl5eq 2668 . 2 (𝐺𝑇𝐺 / 𝑔if(𝐹 = 𝑁, 𝑔, 𝑋) = if(𝐹 = 𝑁, 𝐺, 𝐺 / 𝑔𝑋))
159, 14eqtrd 2656 1 (𝐺𝑇 → (𝑈𝐺) = if(𝐹 = 𝑁, 𝐺, 𝐺 / 𝑔𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  Vcvv 3200  [wsbc 3435  csb 3533  ifcif 4086  cmpt 4729  cfv 5888  crio 6610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-riota 6611
This theorem is referenced by:  cdlemk40t  36206  cdlemk40f  36207
  Copyright terms: Public domain W3C validator