![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvmpts | Structured version Visualization version GIF version |
Description: Value of a function given in maps-to notation, using explicit class substitution. (Contributed by Scott Fenton, 17-Jul-2013.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
fvmpts.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐶 ↦ 𝐵) |
Ref | Expression |
---|---|
fvmpts | ⊢ ((𝐴 ∈ 𝐶 ∧ ⦋𝐴 / 𝑥⦌𝐵 ∈ 𝑉) → (𝐹‘𝐴) = ⦋𝐴 / 𝑥⦌𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1 3536 | . 2 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) | |
2 | fvmpts.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐶 ↦ 𝐵) | |
3 | nfcv 2764 | . . . 4 ⊢ Ⅎ𝑦𝐵 | |
4 | nfcsb1v 3549 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
5 | csbeq1a 3542 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
6 | 3, 4, 5 | cbvmpt 4749 | . . 3 ⊢ (𝑥 ∈ 𝐶 ↦ 𝐵) = (𝑦 ∈ 𝐶 ↦ ⦋𝑦 / 𝑥⦌𝐵) |
7 | 2, 6 | eqtri 2644 | . 2 ⊢ 𝐹 = (𝑦 ∈ 𝐶 ↦ ⦋𝑦 / 𝑥⦌𝐵) |
8 | 1, 7 | fvmptg 6280 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ ⦋𝐴 / 𝑥⦌𝐵 ∈ 𝑉) → (𝐹‘𝐴) = ⦋𝐴 / 𝑥⦌𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ⦋csb 3533 ↦ cmpt 4729 ‘cfv 5888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 |
This theorem is referenced by: fvmptd 6288 fvmpt2curryd 7397 mptnn0fsupp 12797 mptnn0fsuppr 12799 zsum 14449 prodss 14677 fprodser 14679 fprodn0 14709 fprodefsum 14825 pcmpt 15596 issubc 16495 gsummptnn0fz 18382 mptscmfsupp0 18928 gsummoncoe1 19674 fvmptnn04if 20654 prdsdsf 22172 itgparts 23810 dchrisumlema 25177 abfmpeld 29454 abfmpel 29455 cdlemk40 36205 aomclem6 37629 ellimcabssub0 39849 constlimc 39856 vonn0ioo2 40904 vonn0icc2 40906 |
Copyright terms: Public domain | W3C validator |