Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk40 Structured version   Visualization version   Unicode version

Theorem cdlemk40 36205
Description: TODO: fix comment. (Contributed by NM, 31-Jul-2013.)
Hypotheses
Ref Expression
cdlemk40.x  |-  X  =  ( iota_ z  e.  T  ph )
cdlemk40.u  |-  U  =  ( g  e.  T  |->  if ( F  =  N ,  g ,  X ) )
Assertion
Ref Expression
cdlemk40  |-  ( G  e.  T  ->  ( U `  G )  =  if ( F  =  N ,  G ,  [_ G  /  g ]_ X ) )
Distinct variable groups:    g, F    g, N    T, g
Allowed substitution hints:    ph( z, g)    T( z)    U( z, g)    F( z)    G( z, g)    N( z)    X( z, g)

Proof of Theorem cdlemk40
StepHypRef Expression
1 vex 3203 . . . . 5  |-  g  e. 
_V
2 cdlemk40.x . . . . . 6  |-  X  =  ( iota_ z  e.  T  ph )
3 riotaex 6615 . . . . . 6  |-  ( iota_ z  e.  T  ph )  e.  _V
42, 3eqeltri 2697 . . . . 5  |-  X  e. 
_V
51, 4ifex 4156 . . . 4  |-  if ( F  =  N , 
g ,  X )  e.  _V
65csbex 4793 . . 3  |-  [_ G  /  g ]_ if ( F  =  N ,  g ,  X
)  e.  _V
7 cdlemk40.u . . . 4  |-  U  =  ( g  e.  T  |->  if ( F  =  N ,  g ,  X ) )
87fvmpts 6285 . . 3  |-  ( ( G  e.  T  /\  [_ G  /  g ]_ if ( F  =  N ,  g ,  X
)  e.  _V )  ->  ( U `  G
)  =  [_ G  /  g ]_ if ( F  =  N ,  g ,  X
) )
96, 8mpan2 707 . 2  |-  ( G  e.  T  ->  ( U `  G )  =  [_ G  /  g ]_ if ( F  =  N ,  g ,  X ) )
10 csbif 4138 . . 3  |-  [_ G  /  g ]_ if ( F  =  N ,  g ,  X
)  =  if (
[. G  /  g ]. F  =  N ,  [_ G  /  g ]_ g ,  [_ G  /  g ]_ X
)
11 sbcg 3503 . . . 4  |-  ( G  e.  T  ->  ( [. G  /  g ]. F  =  N  <->  F  =  N ) )
12 csbvarg 4003 . . . 4  |-  ( G  e.  T  ->  [_ G  /  g ]_ g  =  G )
1311, 12ifbieq1d 4109 . . 3  |-  ( G  e.  T  ->  if ( [. G  /  g ]. F  =  N ,  [_ G  /  g ]_ g ,  [_ G  /  g ]_ X
)  =  if ( F  =  N ,  G ,  [_ G  / 
g ]_ X ) )
1410, 13syl5eq 2668 . 2  |-  ( G  e.  T  ->  [_ G  /  g ]_ if ( F  =  N ,  g ,  X
)  =  if ( F  =  N ,  G ,  [_ G  / 
g ]_ X ) )
159, 14eqtrd 2656 1  |-  ( G  e.  T  ->  ( U `  G )  =  if ( F  =  N ,  G ,  [_ G  /  g ]_ X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   _Vcvv 3200   [.wsbc 3435   [_csb 3533   ifcif 4086    |-> cmpt 4729   ` cfv 5888   iota_crio 6610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-riota 6611
This theorem is referenced by:  cdlemk40t  36206  cdlemk40f  36207
  Copyright terms: Public domain W3C validator