Proof of Theorem cldbnd
| Step | Hyp | Ref
| Expression |
| 1 | | opnbnd.1 |
. . . . 5
⊢ 𝑋 = ∪
𝐽 |
| 2 | 1 | iscld3 20868 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘𝐴) = 𝐴)) |
| 3 | | eqimss 3657 |
. . . 4
⊢
(((cls‘𝐽)‘𝐴) = 𝐴 → ((cls‘𝐽)‘𝐴) ⊆ 𝐴) |
| 4 | 2, 3 | syl6bi 243 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝐴) ⊆ 𝐴)) |
| 5 | | ssinss1 3841 |
. . 3
⊢
(((cls‘𝐽)‘𝐴) ⊆ 𝐴 → (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴))) ⊆ 𝐴) |
| 6 | 4, 5 | syl6 35 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ (Clsd‘𝐽) → (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴))) ⊆ 𝐴)) |
| 7 | | sslin 3839 |
. . . . . 6
⊢
((((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴))) ⊆ 𝐴 → ((𝑋 ∖ 𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴)))) ⊆ ((𝑋 ∖ 𝐴) ∩ 𝐴)) |
| 8 | 7 | adantl 482 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴))) ⊆ 𝐴) → ((𝑋 ∖ 𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴)))) ⊆ ((𝑋 ∖ 𝐴) ∩ 𝐴)) |
| 9 | | incom 3805 |
. . . . . 6
⊢ ((𝑋 ∖ 𝐴) ∩ 𝐴) = (𝐴 ∩ (𝑋 ∖ 𝐴)) |
| 10 | | disjdif 4040 |
. . . . . 6
⊢ (𝐴 ∩ (𝑋 ∖ 𝐴)) = ∅ |
| 11 | 9, 10 | eqtri 2644 |
. . . . 5
⊢ ((𝑋 ∖ 𝐴) ∩ 𝐴) = ∅ |
| 12 | | sseq0 3975 |
. . . . 5
⊢ ((((𝑋 ∖ 𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴)))) ⊆ ((𝑋 ∖ 𝐴) ∩ 𝐴) ∧ ((𝑋 ∖ 𝐴) ∩ 𝐴) = ∅) → ((𝑋 ∖ 𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴)))) = ∅) |
| 13 | 8, 11, 12 | sylancl 694 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴))) ⊆ 𝐴) → ((𝑋 ∖ 𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴)))) = ∅) |
| 14 | 13 | ex 450 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴))) ⊆ 𝐴 → ((𝑋 ∖ 𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴)))) = ∅)) |
| 15 | | incom 3805 |
. . . . . . . 8
⊢
(((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴))) = (((cls‘𝐽)‘(𝑋 ∖ 𝐴)) ∩ ((cls‘𝐽)‘𝐴)) |
| 16 | | dfss4 3858 |
. . . . . . . . . . 11
⊢ (𝐴 ⊆ 𝑋 ↔ (𝑋 ∖ (𝑋 ∖ 𝐴)) = 𝐴) |
| 17 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∖ (𝑋 ∖ 𝐴)) = 𝐴 → ((cls‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝐴))) = ((cls‘𝐽)‘𝐴)) |
| 18 | 17 | eqcomd 2628 |
. . . . . . . . . . 11
⊢ ((𝑋 ∖ (𝑋 ∖ 𝐴)) = 𝐴 → ((cls‘𝐽)‘𝐴) = ((cls‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝐴)))) |
| 19 | 16, 18 | sylbi 207 |
. . . . . . . . . 10
⊢ (𝐴 ⊆ 𝑋 → ((cls‘𝐽)‘𝐴) = ((cls‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝐴)))) |
| 20 | 19 | adantl 482 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘𝐴) = ((cls‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝐴)))) |
| 21 | 20 | ineq2d 3814 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (((cls‘𝐽)‘(𝑋 ∖ 𝐴)) ∩ ((cls‘𝐽)‘𝐴)) = (((cls‘𝐽)‘(𝑋 ∖ 𝐴)) ∩ ((cls‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝐴))))) |
| 22 | 15, 21 | syl5eq 2668 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴))) = (((cls‘𝐽)‘(𝑋 ∖ 𝐴)) ∩ ((cls‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝐴))))) |
| 23 | 22 | ineq2d 3814 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((𝑋 ∖ 𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴)))) = ((𝑋 ∖ 𝐴) ∩ (((cls‘𝐽)‘(𝑋 ∖ 𝐴)) ∩ ((cls‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝐴)))))) |
| 24 | 23 | eqeq1d 2624 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (((𝑋 ∖ 𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴)))) = ∅ ↔ ((𝑋 ∖ 𝐴) ∩ (((cls‘𝐽)‘(𝑋 ∖ 𝐴)) ∩ ((cls‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝐴))))) = ∅)) |
| 25 | | difss 3737 |
. . . . . . 7
⊢ (𝑋 ∖ 𝐴) ⊆ 𝑋 |
| 26 | 1 | opnbnd 32320 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ (𝑋 ∖ 𝐴) ⊆ 𝑋) → ((𝑋 ∖ 𝐴) ∈ 𝐽 ↔ ((𝑋 ∖ 𝐴) ∩ (((cls‘𝐽)‘(𝑋 ∖ 𝐴)) ∩ ((cls‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝐴))))) = ∅)) |
| 27 | 25, 26 | mpan2 707 |
. . . . . 6
⊢ (𝐽 ∈ Top → ((𝑋 ∖ 𝐴) ∈ 𝐽 ↔ ((𝑋 ∖ 𝐴) ∩ (((cls‘𝐽)‘(𝑋 ∖ 𝐴)) ∩ ((cls‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝐴))))) = ∅)) |
| 28 | 27 | adantr 481 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((𝑋 ∖ 𝐴) ∈ 𝐽 ↔ ((𝑋 ∖ 𝐴) ∩ (((cls‘𝐽)‘(𝑋 ∖ 𝐴)) ∩ ((cls‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝐴))))) = ∅)) |
| 29 | 24, 28 | bitr4d 271 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (((𝑋 ∖ 𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴)))) = ∅ ↔ (𝑋 ∖ 𝐴) ∈ 𝐽)) |
| 30 | 1 | opncld 20837 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ (𝑋 ∖ 𝐴) ∈ 𝐽) → (𝑋 ∖ (𝑋 ∖ 𝐴)) ∈ (Clsd‘𝐽)) |
| 31 | 30 | ex 450 |
. . . . . 6
⊢ (𝐽 ∈ Top → ((𝑋 ∖ 𝐴) ∈ 𝐽 → (𝑋 ∖ (𝑋 ∖ 𝐴)) ∈ (Clsd‘𝐽))) |
| 32 | 31 | adantr 481 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((𝑋 ∖ 𝐴) ∈ 𝐽 → (𝑋 ∖ (𝑋 ∖ 𝐴)) ∈ (Clsd‘𝐽))) |
| 33 | | eleq1 2689 |
. . . . . . 7
⊢ ((𝑋 ∖ (𝑋 ∖ 𝐴)) = 𝐴 → ((𝑋 ∖ (𝑋 ∖ 𝐴)) ∈ (Clsd‘𝐽) ↔ 𝐴 ∈ (Clsd‘𝐽))) |
| 34 | 16, 33 | sylbi 207 |
. . . . . 6
⊢ (𝐴 ⊆ 𝑋 → ((𝑋 ∖ (𝑋 ∖ 𝐴)) ∈ (Clsd‘𝐽) ↔ 𝐴 ∈ (Clsd‘𝐽))) |
| 35 | 34 | adantl 482 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((𝑋 ∖ (𝑋 ∖ 𝐴)) ∈ (Clsd‘𝐽) ↔ 𝐴 ∈ (Clsd‘𝐽))) |
| 36 | 32, 35 | sylibd 229 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((𝑋 ∖ 𝐴) ∈ 𝐽 → 𝐴 ∈ (Clsd‘𝐽))) |
| 37 | 29, 36 | sylbid 230 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (((𝑋 ∖ 𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴)))) = ∅ → 𝐴 ∈ (Clsd‘𝐽))) |
| 38 | 14, 37 | syld 47 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴))) ⊆ 𝐴 → 𝐴 ∈ (Clsd‘𝐽))) |
| 39 | 6, 38 | impbid 202 |
1
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ (Clsd‘𝐽) ↔ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴))) ⊆ 𝐴)) |