Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cldbnd Structured version   Visualization version   Unicode version

Theorem cldbnd 32321
Description: A set is closed iff it contains its boundary. (Contributed by Jeff Hankins, 1-Oct-2009.)
Hypothesis
Ref Expression
opnbnd.1  |-  X  = 
U. J
Assertion
Ref Expression
cldbnd  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( A  e.  (
Clsd `  J )  <->  ( ( ( cls `  J
) `  A )  i^i  ( ( cls `  J
) `  ( X  \  A ) ) ) 
C_  A ) )

Proof of Theorem cldbnd
StepHypRef Expression
1 opnbnd.1 . . . . 5  |-  X  = 
U. J
21iscld3 20868 . . . 4  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( A  e.  (
Clsd `  J )  <->  ( ( cls `  J
) `  A )  =  A ) )
3 eqimss 3657 . . . 4  |-  ( ( ( cls `  J
) `  A )  =  A  ->  ( ( cls `  J ) `
 A )  C_  A )
42, 3syl6bi 243 . . 3  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( A  e.  (
Clsd `  J )  ->  ( ( cls `  J
) `  A )  C_  A ) )
5 ssinss1 3841 . . 3  |-  ( ( ( cls `  J
) `  A )  C_  A  ->  ( (
( cls `  J
) `  A )  i^i  ( ( cls `  J
) `  ( X  \  A ) ) ) 
C_  A )
64, 5syl6 35 . 2  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( A  e.  (
Clsd `  J )  ->  ( ( ( cls `  J ) `  A
)  i^i  ( ( cls `  J ) `  ( X  \  A ) ) )  C_  A
) )
7 sslin 3839 . . . . . 6  |-  ( ( ( ( cls `  J
) `  A )  i^i  ( ( cls `  J
) `  ( X  \  A ) ) ) 
C_  A  ->  (
( X  \  A
)  i^i  ( (
( cls `  J
) `  A )  i^i  ( ( cls `  J
) `  ( X  \  A ) ) ) )  C_  ( ( X  \  A )  i^i 
A ) )
87adantl 482 . . . . 5  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( ( ( cls `  J ) `  A
)  i^i  ( ( cls `  J ) `  ( X  \  A ) ) )  C_  A
)  ->  ( ( X  \  A )  i^i  ( ( ( cls `  J ) `  A
)  i^i  ( ( cls `  J ) `  ( X  \  A ) ) ) )  C_  ( ( X  \  A )  i^i  A
) )
9 incom 3805 . . . . . 6  |-  ( ( X  \  A )  i^i  A )  =  ( A  i^i  ( X  \  A ) )
10 disjdif 4040 . . . . . 6  |-  ( A  i^i  ( X  \  A ) )  =  (/)
119, 10eqtri 2644 . . . . 5  |-  ( ( X  \  A )  i^i  A )  =  (/)
12 sseq0 3975 . . . . 5  |-  ( ( ( ( X  \  A )  i^i  (
( ( cls `  J
) `  A )  i^i  ( ( cls `  J
) `  ( X  \  A ) ) ) )  C_  ( ( X  \  A )  i^i 
A )  /\  (
( X  \  A
)  i^i  A )  =  (/) )  ->  (
( X  \  A
)  i^i  ( (
( cls `  J
) `  A )  i^i  ( ( cls `  J
) `  ( X  \  A ) ) ) )  =  (/) )
138, 11, 12sylancl 694 . . . 4  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( ( ( cls `  J ) `  A
)  i^i  ( ( cls `  J ) `  ( X  \  A ) ) )  C_  A
)  ->  ( ( X  \  A )  i^i  ( ( ( cls `  J ) `  A
)  i^i  ( ( cls `  J ) `  ( X  \  A ) ) ) )  =  (/) )
1413ex 450 . . 3  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( ( ( ( cls `  J ) `
 A )  i^i  ( ( cls `  J
) `  ( X  \  A ) ) ) 
C_  A  ->  (
( X  \  A
)  i^i  ( (
( cls `  J
) `  A )  i^i  ( ( cls `  J
) `  ( X  \  A ) ) ) )  =  (/) ) )
15 incom 3805 . . . . . . . 8  |-  ( ( ( cls `  J
) `  A )  i^i  ( ( cls `  J
) `  ( X  \  A ) ) )  =  ( ( ( cls `  J ) `
 ( X  \  A ) )  i^i  ( ( cls `  J
) `  A )
)
16 dfss4 3858 . . . . . . . . . . 11  |-  ( A 
C_  X  <->  ( X  \  ( X  \  A
) )  =  A )
17 fveq2 6191 . . . . . . . . . . . 12  |-  ( ( X  \  ( X 
\  A ) )  =  A  ->  (
( cls `  J
) `  ( X  \  ( X  \  A
) ) )  =  ( ( cls `  J
) `  A )
)
1817eqcomd 2628 . . . . . . . . . . 11  |-  ( ( X  \  ( X 
\  A ) )  =  A  ->  (
( cls `  J
) `  A )  =  ( ( cls `  J ) `  ( X  \  ( X  \  A ) ) ) )
1916, 18sylbi 207 . . . . . . . . . 10  |-  ( A 
C_  X  ->  (
( cls `  J
) `  A )  =  ( ( cls `  J ) `  ( X  \  ( X  \  A ) ) ) )
2019adantl 482 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( ( cls `  J
) `  A )  =  ( ( cls `  J ) `  ( X  \  ( X  \  A ) ) ) )
2120ineq2d 3814 . . . . . . . 8  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( ( ( cls `  J ) `  ( X  \  A ) )  i^i  ( ( cls `  J ) `  A
) )  =  ( ( ( cls `  J
) `  ( X  \  A ) )  i^i  ( ( cls `  J
) `  ( X  \  ( X  \  A
) ) ) ) )
2215, 21syl5eq 2668 . . . . . . 7  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( ( ( cls `  J ) `  A
)  i^i  ( ( cls `  J ) `  ( X  \  A ) ) )  =  ( ( ( cls `  J
) `  ( X  \  A ) )  i^i  ( ( cls `  J
) `  ( X  \  ( X  \  A
) ) ) ) )
2322ineq2d 3814 . . . . . 6  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( ( X  \  A )  i^i  (
( ( cls `  J
) `  A )  i^i  ( ( cls `  J
) `  ( X  \  A ) ) ) )  =  ( ( X  \  A )  i^i  ( ( ( cls `  J ) `
 ( X  \  A ) )  i^i  ( ( cls `  J
) `  ( X  \  ( X  \  A
) ) ) ) ) )
2423eqeq1d 2624 . . . . 5  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( ( ( X 
\  A )  i^i  ( ( ( cls `  J ) `  A
)  i^i  ( ( cls `  J ) `  ( X  \  A ) ) ) )  =  (/) 
<->  ( ( X  \  A )  i^i  (
( ( cls `  J
) `  ( X  \  A ) )  i^i  ( ( cls `  J
) `  ( X  \  ( X  \  A
) ) ) ) )  =  (/) ) )
25 difss 3737 . . . . . . 7  |-  ( X 
\  A )  C_  X
261opnbnd 32320 . . . . . . 7  |-  ( ( J  e.  Top  /\  ( X  \  A ) 
C_  X )  -> 
( ( X  \  A )  e.  J  <->  ( ( X  \  A
)  i^i  ( (
( cls `  J
) `  ( X  \  A ) )  i^i  ( ( cls `  J
) `  ( X  \  ( X  \  A
) ) ) ) )  =  (/) ) )
2725, 26mpan2 707 . . . . . 6  |-  ( J  e.  Top  ->  (
( X  \  A
)  e.  J  <->  ( ( X  \  A )  i^i  ( ( ( cls `  J ) `  ( X  \  A ) )  i^i  ( ( cls `  J ) `  ( X  \  ( X  \  A ) ) ) ) )  =  (/) ) )
2827adantr 481 . . . . 5  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( ( X  \  A )  e.  J  <->  ( ( X  \  A
)  i^i  ( (
( cls `  J
) `  ( X  \  A ) )  i^i  ( ( cls `  J
) `  ( X  \  ( X  \  A
) ) ) ) )  =  (/) ) )
2924, 28bitr4d 271 . . . 4  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( ( ( X 
\  A )  i^i  ( ( ( cls `  J ) `  A
)  i^i  ( ( cls `  J ) `  ( X  \  A ) ) ) )  =  (/) 
<->  ( X  \  A
)  e.  J ) )
301opncld 20837 . . . . . . 7  |-  ( ( J  e.  Top  /\  ( X  \  A )  e.  J )  -> 
( X  \  ( X  \  A ) )  e.  ( Clsd `  J
) )
3130ex 450 . . . . . 6  |-  ( J  e.  Top  ->  (
( X  \  A
)  e.  J  -> 
( X  \  ( X  \  A ) )  e.  ( Clsd `  J
) ) )
3231adantr 481 . . . . 5  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( ( X  \  A )  e.  J  ->  ( X  \  ( X  \  A ) )  e.  ( Clsd `  J
) ) )
33 eleq1 2689 . . . . . . 7  |-  ( ( X  \  ( X 
\  A ) )  =  A  ->  (
( X  \  ( X  \  A ) )  e.  ( Clsd `  J
)  <->  A  e.  ( Clsd `  J ) ) )
3416, 33sylbi 207 . . . . . 6  |-  ( A 
C_  X  ->  (
( X  \  ( X  \  A ) )  e.  ( Clsd `  J
)  <->  A  e.  ( Clsd `  J ) ) )
3534adantl 482 . . . . 5  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( ( X  \ 
( X  \  A
) )  e.  (
Clsd `  J )  <->  A  e.  ( Clsd `  J
) ) )
3632, 35sylibd 229 . . . 4  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( ( X  \  A )  e.  J  ->  A  e.  ( Clsd `  J ) ) )
3729, 36sylbid 230 . . 3  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( ( ( X 
\  A )  i^i  ( ( ( cls `  J ) `  A
)  i^i  ( ( cls `  J ) `  ( X  \  A ) ) ) )  =  (/)  ->  A  e.  (
Clsd `  J )
) )
3814, 37syld 47 . 2  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( ( ( ( cls `  J ) `
 A )  i^i  ( ( cls `  J
) `  ( X  \  A ) ) ) 
C_  A  ->  A  e.  ( Clsd `  J
) ) )
396, 38impbid 202 1  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( A  e.  (
Clsd `  J )  <->  ( ( ( cls `  J
) `  A )  i^i  ( ( cls `  J
) `  ( X  \  A ) ) ) 
C_  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    \ cdif 3571    i^i cin 3573    C_ wss 3574   (/)c0 3915   U.cuni 4436   ` cfv 5888   Topctop 20698   Clsdccld 20820   clsccl 20822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-top 20699  df-cld 20823  df-ntr 20824  df-cls 20825
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator