| Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cldbnd | Structured version Visualization version Unicode version | ||
| Description: A set is closed iff it contains its boundary. (Contributed by Jeff Hankins, 1-Oct-2009.) |
| Ref | Expression |
|---|---|
| opnbnd.1 |
|
| Ref | Expression |
|---|---|
| cldbnd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opnbnd.1 |
. . . . 5
| |
| 2 | 1 | iscld3 20868 |
. . . 4
|
| 3 | eqimss 3657 |
. . . 4
| |
| 4 | 2, 3 | syl6bi 243 |
. . 3
|
| 5 | ssinss1 3841 |
. . 3
| |
| 6 | 4, 5 | syl6 35 |
. 2
|
| 7 | sslin 3839 |
. . . . . 6
| |
| 8 | 7 | adantl 482 |
. . . . 5
|
| 9 | incom 3805 |
. . . . . 6
| |
| 10 | disjdif 4040 |
. . . . . 6
| |
| 11 | 9, 10 | eqtri 2644 |
. . . . 5
|
| 12 | sseq0 3975 |
. . . . 5
| |
| 13 | 8, 11, 12 | sylancl 694 |
. . . 4
|
| 14 | 13 | ex 450 |
. . 3
|
| 15 | incom 3805 |
. . . . . . . 8
| |
| 16 | dfss4 3858 |
. . . . . . . . . . 11
| |
| 17 | fveq2 6191 |
. . . . . . . . . . . 12
| |
| 18 | 17 | eqcomd 2628 |
. . . . . . . . . . 11
|
| 19 | 16, 18 | sylbi 207 |
. . . . . . . . . 10
|
| 20 | 19 | adantl 482 |
. . . . . . . . 9
|
| 21 | 20 | ineq2d 3814 |
. . . . . . . 8
|
| 22 | 15, 21 | syl5eq 2668 |
. . . . . . 7
|
| 23 | 22 | ineq2d 3814 |
. . . . . 6
|
| 24 | 23 | eqeq1d 2624 |
. . . . 5
|
| 25 | difss 3737 |
. . . . . . 7
| |
| 26 | 1 | opnbnd 32320 |
. . . . . . 7
|
| 27 | 25, 26 | mpan2 707 |
. . . . . 6
|
| 28 | 27 | adantr 481 |
. . . . 5
|
| 29 | 24, 28 | bitr4d 271 |
. . . 4
|
| 30 | 1 | opncld 20837 |
. . . . . . 7
|
| 31 | 30 | ex 450 |
. . . . . 6
|
| 32 | 31 | adantr 481 |
. . . . 5
|
| 33 | eleq1 2689 |
. . . . . . 7
| |
| 34 | 16, 33 | sylbi 207 |
. . . . . 6
|
| 35 | 34 | adantl 482 |
. . . . 5
|
| 36 | 32, 35 | sylibd 229 |
. . . 4
|
| 37 | 29, 36 | sylbid 230 |
. . 3
|
| 38 | 14, 37 | syld 47 |
. 2
|
| 39 | 6, 38 | impbid 202 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-top 20699 df-cld 20823 df-ntr 20824 df-cls 20825 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |