![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > climcn1lem | Structured version Visualization version GIF version |
Description: The limit of a continuous function, theorem form. (Contributed by Mario Carneiro, 9-Feb-2014.) |
Ref | Expression |
---|---|
climcn1lem.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climcn1lem.2 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
climcn1lem.4 | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
climcn1lem.5 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climcn1lem.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
climcn1lem.7 | ⊢ 𝐻:ℂ⟶ℂ |
climcn1lem.8 | ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((𝐻‘𝑧) − (𝐻‘𝐴))) < 𝑥)) |
climcn1lem.9 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐻‘(𝐹‘𝑘))) |
Ref | Expression |
---|---|
climcn1lem | ⊢ (𝜑 → 𝐺 ⇝ (𝐻‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climcn1lem.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climcn1lem.5 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | climcn1lem.2 | . . 3 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
4 | climcl 14230 | . . 3 ⊢ (𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
6 | climcn1lem.7 | . . . 4 ⊢ 𝐻:ℂ⟶ℂ | |
7 | 6 | ffvelrni 6358 | . . 3 ⊢ (𝑧 ∈ ℂ → (𝐻‘𝑧) ∈ ℂ) |
8 | 7 | adantl 482 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (𝐻‘𝑧) ∈ ℂ) |
9 | climcn1lem.4 | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
10 | climcn1lem.8 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((𝐻‘𝑧) − (𝐻‘𝐴))) < 𝑥)) | |
11 | 5, 10 | sylan 488 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((𝐻‘𝑧) − (𝐻‘𝐴))) < 𝑥)) |
12 | climcn1lem.6 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | |
13 | climcn1lem.9 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐻‘(𝐹‘𝑘))) | |
14 | 1, 2, 5, 8, 3, 9, 11, 12, 13 | climcn1 14322 | 1 ⊢ (𝜑 → 𝐺 ⇝ (𝐻‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 ∃wrex 2913 class class class wbr 4653 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 ℂcc 9934 < clt 10074 − cmin 10266 ℤcz 11377 ℤ≥cuz 11687 ℝ+crp 11832 abscabs 13974 ⇝ cli 14215 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-pre-lttri 10010 ax-pre-lttrn 10011 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-neg 10269 df-z 11378 df-uz 11688 df-clim 14219 |
This theorem is referenced by: climabs 14334 climcj 14335 climre 14336 climim 14337 sinccvglem 31566 |
Copyright terms: Public domain | W3C validator |