MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlksfclwwlk1hashn Structured version   Visualization version   GIF version

Theorem clwlksfclwwlk1hashn 26959
Description: The size of the first component of a closed walk. (Contributed by Alexander van der Vekens, 5-Jul-2018.) (Revised by AV, 2-May-2021.)
Hypotheses
Ref Expression
clwlksfclwwlk.1 𝐴 = (1st𝑐)
clwlksfclwwlk.2 𝐵 = (2nd𝑐)
clwlksfclwwlk.c 𝐶 = {𝑐 ∈ (ClWalks‘𝐺) ∣ (#‘𝐴) = 𝑁}
clwlksfclwwlk.f 𝐹 = (𝑐𝐶 ↦ (𝐵 substr ⟨0, (#‘𝐴)⟩))
Assertion
Ref Expression
clwlksfclwwlk1hashn (𝑊𝐶 → (#‘(1st𝑊)) = 𝑁)
Distinct variable groups:   𝐺,𝑐   𝑁,𝑐   𝑊,𝑐
Allowed substitution hints:   𝐴(𝑐)   𝐵(𝑐)   𝐶(𝑐)   𝐹(𝑐)

Proof of Theorem clwlksfclwwlk1hashn
StepHypRef Expression
1 clwlksfclwwlk.1 . . . . . 6 𝐴 = (1st𝑐)
21fveq2i 6194 . . . . 5 (#‘𝐴) = (#‘(1st𝑐))
32eqeq1i 2627 . . . 4 ((#‘𝐴) = 𝑁 ↔ (#‘(1st𝑐)) = 𝑁)
4 fveq2 6191 . . . . . 6 (𝑐 = 𝑊 → (1st𝑐) = (1st𝑊))
54fveq2d 6195 . . . . 5 (𝑐 = 𝑊 → (#‘(1st𝑐)) = (#‘(1st𝑊)))
65eqeq1d 2624 . . . 4 (𝑐 = 𝑊 → ((#‘(1st𝑐)) = 𝑁 ↔ (#‘(1st𝑊)) = 𝑁))
73, 6syl5bb 272 . . 3 (𝑐 = 𝑊 → ((#‘𝐴) = 𝑁 ↔ (#‘(1st𝑊)) = 𝑁))
8 clwlksfclwwlk.c . . 3 𝐶 = {𝑐 ∈ (ClWalks‘𝐺) ∣ (#‘𝐴) = 𝑁}
97, 8elrab2 3366 . 2 (𝑊𝐶 ↔ (𝑊 ∈ (ClWalks‘𝐺) ∧ (#‘(1st𝑊)) = 𝑁))
109simprbi 480 1 (𝑊𝐶 → (#‘(1st𝑊)) = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  {crab 2916  cop 4183  cmpt 4729  cfv 5888  (class class class)co 6650  1st c1st 7166  2nd c2nd 7167  0cc0 9936  #chash 13117   substr csubstr 13295  ClWalkscclwlks 26666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896
This theorem is referenced by:  clwlksf1clwwlklem  26968  clwlksf1clwwlk  26969
  Copyright terms: Public domain W3C validator