![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwlksfclwwlk1hashn | Structured version Visualization version GIF version |
Description: The size of the first component of a closed walk. (Contributed by Alexander van der Vekens, 5-Jul-2018.) (Revised by AV, 2-May-2021.) |
Ref | Expression |
---|---|
clwlksfclwwlk.1 | ⊢ 𝐴 = (1st ‘𝑐) |
clwlksfclwwlk.2 | ⊢ 𝐵 = (2nd ‘𝑐) |
clwlksfclwwlk.c | ⊢ 𝐶 = {𝑐 ∈ (ClWalks‘𝐺) ∣ (#‘𝐴) = 𝑁} |
clwlksfclwwlk.f | ⊢ 𝐹 = (𝑐 ∈ 𝐶 ↦ (𝐵 substr 〈0, (#‘𝐴)〉)) |
Ref | Expression |
---|---|
clwlksfclwwlk1hashn | ⊢ (𝑊 ∈ 𝐶 → (#‘(1st ‘𝑊)) = 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clwlksfclwwlk.1 | . . . . . 6 ⊢ 𝐴 = (1st ‘𝑐) | |
2 | 1 | fveq2i 6194 | . . . . 5 ⊢ (#‘𝐴) = (#‘(1st ‘𝑐)) |
3 | 2 | eqeq1i 2627 | . . . 4 ⊢ ((#‘𝐴) = 𝑁 ↔ (#‘(1st ‘𝑐)) = 𝑁) |
4 | fveq2 6191 | . . . . . 6 ⊢ (𝑐 = 𝑊 → (1st ‘𝑐) = (1st ‘𝑊)) | |
5 | 4 | fveq2d 6195 | . . . . 5 ⊢ (𝑐 = 𝑊 → (#‘(1st ‘𝑐)) = (#‘(1st ‘𝑊))) |
6 | 5 | eqeq1d 2624 | . . . 4 ⊢ (𝑐 = 𝑊 → ((#‘(1st ‘𝑐)) = 𝑁 ↔ (#‘(1st ‘𝑊)) = 𝑁)) |
7 | 3, 6 | syl5bb 272 | . . 3 ⊢ (𝑐 = 𝑊 → ((#‘𝐴) = 𝑁 ↔ (#‘(1st ‘𝑊)) = 𝑁)) |
8 | clwlksfclwwlk.c | . . 3 ⊢ 𝐶 = {𝑐 ∈ (ClWalks‘𝐺) ∣ (#‘𝐴) = 𝑁} | |
9 | 7, 8 | elrab2 3366 | . 2 ⊢ (𝑊 ∈ 𝐶 ↔ (𝑊 ∈ (ClWalks‘𝐺) ∧ (#‘(1st ‘𝑊)) = 𝑁)) |
10 | 9 | simprbi 480 | 1 ⊢ (𝑊 ∈ 𝐶 → (#‘(1st ‘𝑊)) = 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 {crab 2916 〈cop 4183 ↦ cmpt 4729 ‘cfv 5888 (class class class)co 6650 1st c1st 7166 2nd c2nd 7167 0cc0 9936 #chash 13117 substr csubstr 13295 ClWalkscclwlks 26666 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 |
This theorem is referenced by: clwlksf1clwwlklem 26968 clwlksf1clwwlk 26969 |
Copyright terms: Public domain | W3C validator |