MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlksf1clwwlklem Structured version   Visualization version   GIF version

Theorem clwlksf1clwwlklem 26968
Description: Lemma for clwlksf1clwwlk 26969. (Contributed by Alexander van der Vekens, 5-Jul-2018.) (Revised by AV, 3-May-2021.)
Hypotheses
Ref Expression
clwlksfclwwlk.1 𝐴 = (1st𝑐)
clwlksfclwwlk.2 𝐵 = (2nd𝑐)
clwlksfclwwlk.c 𝐶 = {𝑐 ∈ (ClWalks‘𝐺) ∣ (#‘𝐴) = 𝑁}
clwlksfclwwlk.f 𝐹 = (𝑐𝐶 ↦ (𝐵 substr ⟨0, (#‘𝐴)⟩))
Assertion
Ref Expression
clwlksf1clwwlklem ((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) → (((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩) → ∀𝑦 ∈ (0...𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦)))
Distinct variable groups:   𝐺,𝑐   𝑁,𝑐   𝑊,𝑐   𝐶,𝑐   𝐹,𝑐   𝑦,𝐺   𝑦,𝑁   𝑈,𝑐,𝑦   𝑦,𝑊
Allowed substitution hints:   𝐴(𝑦,𝑐)   𝐵(𝑦,𝑐)   𝐶(𝑦)   𝐹(𝑦)

Proof of Theorem clwlksf1clwwlklem
StepHypRef Expression
1 clwlksfclwwlk.1 . . . . . . . . . . . 12 𝐴 = (1st𝑐)
2 clwlksfclwwlk.2 . . . . . . . . . . . 12 𝐵 = (2nd𝑐)
3 clwlksfclwwlk.c . . . . . . . . . . . 12 𝐶 = {𝑐 ∈ (ClWalks‘𝐺) ∣ (#‘𝐴) = 𝑁}
4 clwlksfclwwlk.f . . . . . . . . . . . 12 𝐹 = (𝑐𝐶 ↦ (𝐵 substr ⟨0, (#‘𝐴)⟩))
51, 2, 3, 4clwlksf1clwwlklem3 26967 . . . . . . . . . . 11 (𝑊𝐶 → (2nd𝑊) ∈ Word (Vtx‘𝐺))
61, 2, 3, 4clwlksf1clwwlklem3 26967 . . . . . . . . . . 11 (𝑈𝐶 → (2nd𝑈) ∈ Word (Vtx‘𝐺))
75, 6anim12ci 591 . . . . . . . . . 10 ((𝑊𝐶𝑈𝐶) → ((2nd𝑈) ∈ Word (Vtx‘𝐺) ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺)))
87adantr 481 . . . . . . . . 9 (((𝑊𝐶𝑈𝐶) ∧ 𝑁 ∈ ℕ) → ((2nd𝑈) ∈ Word (Vtx‘𝐺) ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺)))
9 nnnn0 11299 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
109adantl 482 . . . . . . . . . 10 (((𝑊𝐶𝑈𝐶) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0)
111, 2, 3, 4clwlksf1clwwlklem1 26965 . . . . . . . . . . . 12 (𝑈𝐶𝑁 ≤ (#‘(2nd𝑈)))
1211adantl 482 . . . . . . . . . . 11 ((𝑊𝐶𝑈𝐶) → 𝑁 ≤ (#‘(2nd𝑈)))
1312adantr 481 . . . . . . . . . 10 (((𝑊𝐶𝑈𝐶) ∧ 𝑁 ∈ ℕ) → 𝑁 ≤ (#‘(2nd𝑈)))
141, 2, 3, 4clwlksf1clwwlklem1 26965 . . . . . . . . . . . 12 (𝑊𝐶𝑁 ≤ (#‘(2nd𝑊)))
1514adantr 481 . . . . . . . . . . 11 ((𝑊𝐶𝑈𝐶) → 𝑁 ≤ (#‘(2nd𝑊)))
1615adantr 481 . . . . . . . . . 10 (((𝑊𝐶𝑈𝐶) ∧ 𝑁 ∈ ℕ) → 𝑁 ≤ (#‘(2nd𝑊)))
1710, 13, 163jca 1242 . . . . . . . . 9 (((𝑊𝐶𝑈𝐶) ∧ 𝑁 ∈ ℕ) → (𝑁 ∈ ℕ0𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊))))
188, 17jca 554 . . . . . . . 8 (((𝑊𝐶𝑈𝐶) ∧ 𝑁 ∈ ℕ) → (((2nd𝑈) ∈ Word (Vtx‘𝐺) ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺)) ∧ (𝑁 ∈ ℕ0𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊)))))
1918exp31 630 . . . . . . 7 (𝑊𝐶 → (𝑈𝐶 → (𝑁 ∈ ℕ → (((2nd𝑈) ∈ Word (Vtx‘𝐺) ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺)) ∧ (𝑁 ∈ ℕ0𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊)))))))
20193imp31 1257 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) → (((2nd𝑈) ∈ Word (Vtx‘𝐺) ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺)) ∧ (𝑁 ∈ ℕ0𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊)))))
2120adantr 481 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → (((2nd𝑈) ∈ Word (Vtx‘𝐺) ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺)) ∧ (𝑁 ∈ ℕ0𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊)))))
221, 2, 3, 4clwlksfclwwlk1hashn 26959 . . . . . . . . . 10 (𝑈𝐶 → (#‘(1st𝑈)) = 𝑁)
23223ad2ant2 1083 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) → (#‘(1st𝑈)) = 𝑁)
2423opeq2d 4409 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) → ⟨0, (#‘(1st𝑈))⟩ = ⟨0, 𝑁⟩)
2524oveq2d 6666 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) → ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑈) substr ⟨0, 𝑁⟩))
261, 2, 3, 4clwlksfclwwlk1hashn 26959 . . . . . . . . . 10 (𝑊𝐶 → (#‘(1st𝑊)) = 𝑁)
27263ad2ant3 1084 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) → (#‘(1st𝑊)) = 𝑁)
2827opeq2d 4409 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) → ⟨0, (#‘(1st𝑊))⟩ = ⟨0, 𝑁⟩)
2928oveq2d 6666 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) → ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩) = ((2nd𝑊) substr ⟨0, 𝑁⟩))
3025, 29eqeq12d 2637 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) → (((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩) ↔ ((2nd𝑈) substr ⟨0, 𝑁⟩) = ((2nd𝑊) substr ⟨0, 𝑁⟩)))
3130biimpa 501 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → ((2nd𝑈) substr ⟨0, 𝑁⟩) = ((2nd𝑊) substr ⟨0, 𝑁⟩))
32 simpl 473 . . . . . . 7 ((((2nd𝑈) ∈ Word (Vtx‘𝐺) ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺)) ∧ (𝑁 ∈ ℕ0𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊)))) → ((2nd𝑈) ∈ Word (Vtx‘𝐺) ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺)))
33 id 22 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
3433, 33jca 554 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑁 ∈ ℕ0𝑁 ∈ ℕ0))
35343ad2ant1 1082 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊))) → (𝑁 ∈ ℕ0𝑁 ∈ ℕ0))
3635adantl 482 . . . . . . 7 ((((2nd𝑈) ∈ Word (Vtx‘𝐺) ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺)) ∧ (𝑁 ∈ ℕ0𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊)))) → (𝑁 ∈ ℕ0𝑁 ∈ ℕ0))
37 3simpc 1060 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊))) → (𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊))))
3837adantl 482 . . . . . . 7 ((((2nd𝑈) ∈ Word (Vtx‘𝐺) ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺)) ∧ (𝑁 ∈ ℕ0𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊)))) → (𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊))))
39 swrdeq 13444 . . . . . . 7 ((((2nd𝑈) ∈ Word (Vtx‘𝐺) ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺)) ∧ (𝑁 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊)))) → (((2nd𝑈) substr ⟨0, 𝑁⟩) = ((2nd𝑊) substr ⟨0, 𝑁⟩) ↔ (𝑁 = 𝑁 ∧ ∀𝑦 ∈ (0..^𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦))))
4032, 36, 38, 39syl3anc 1326 . . . . . 6 ((((2nd𝑈) ∈ Word (Vtx‘𝐺) ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺)) ∧ (𝑁 ∈ ℕ0𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊)))) → (((2nd𝑈) substr ⟨0, 𝑁⟩) = ((2nd𝑊) substr ⟨0, 𝑁⟩) ↔ (𝑁 = 𝑁 ∧ ∀𝑦 ∈ (0..^𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦))))
41 simpr 477 . . . . . 6 ((𝑁 = 𝑁 ∧ ∀𝑦 ∈ (0..^𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦)) → ∀𝑦 ∈ (0..^𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦))
4240, 41syl6bi 243 . . . . 5 ((((2nd𝑈) ∈ Word (Vtx‘𝐺) ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺)) ∧ (𝑁 ∈ ℕ0𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊)))) → (((2nd𝑈) substr ⟨0, 𝑁⟩) = ((2nd𝑊) substr ⟨0, 𝑁⟩) → ∀𝑦 ∈ (0..^𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦)))
4321, 31, 42sylc 65 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → ∀𝑦 ∈ (0..^𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦))
44 lbfzo0 12507 . . . . . . . . 9 (0 ∈ (0..^𝑁) ↔ 𝑁 ∈ ℕ)
4544biimpri 218 . . . . . . . 8 (𝑁 ∈ ℕ → 0 ∈ (0..^𝑁))
46453ad2ant1 1082 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) → 0 ∈ (0..^𝑁))
4746adantr 481 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → 0 ∈ (0..^𝑁))
48 fveq2 6191 . . . . . . . 8 (𝑦 = 0 → ((2nd𝑈)‘𝑦) = ((2nd𝑈)‘0))
49 fveq2 6191 . . . . . . . 8 (𝑦 = 0 → ((2nd𝑊)‘𝑦) = ((2nd𝑊)‘0))
5048, 49eqeq12d 2637 . . . . . . 7 (𝑦 = 0 → (((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦) ↔ ((2nd𝑈)‘0) = ((2nd𝑊)‘0)))
5150rspcv 3305 . . . . . 6 (0 ∈ (0..^𝑁) → (∀𝑦 ∈ (0..^𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦) → ((2nd𝑈)‘0) = ((2nd𝑊)‘0)))
5247, 51syl 17 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → (∀𝑦 ∈ (0..^𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦) → ((2nd𝑈)‘0) = ((2nd𝑊)‘0)))
531, 2, 3, 4clwlksf1clwwlklem2 26966 . . . . . . . 8 (𝑈𝐶 → ((2nd𝑈)‘0) = ((2nd𝑈)‘𝑁))
54533ad2ant2 1083 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) → ((2nd𝑈)‘0) = ((2nd𝑈)‘𝑁))
5554adantr 481 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → ((2nd𝑈)‘0) = ((2nd𝑈)‘𝑁))
561, 2, 3, 4clwlksf1clwwlklem2 26966 . . . . . . . 8 (𝑊𝐶 → ((2nd𝑊)‘0) = ((2nd𝑊)‘𝑁))
57563ad2ant3 1084 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) → ((2nd𝑊)‘0) = ((2nd𝑊)‘𝑁))
5857adantr 481 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → ((2nd𝑊)‘0) = ((2nd𝑊)‘𝑁))
5955, 58eqeq12d 2637 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → (((2nd𝑈)‘0) = ((2nd𝑊)‘0) ↔ ((2nd𝑈)‘𝑁) = ((2nd𝑊)‘𝑁)))
6052, 59sylibd 229 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → (∀𝑦 ∈ (0..^𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦) → ((2nd𝑈)‘𝑁) = ((2nd𝑊)‘𝑁)))
6143, 60jcai 559 . . 3 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → (∀𝑦 ∈ (0..^𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦) ∧ ((2nd𝑈)‘𝑁) = ((2nd𝑊)‘𝑁)))
62 elnn0uz 11725 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))
639, 62sylib 208 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ‘0))
64633ad2ant1 1082 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) → 𝑁 ∈ (ℤ‘0))
6564adantr 481 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → 𝑁 ∈ (ℤ‘0))
66 fzisfzounsn 12580 . . . . . 6 (𝑁 ∈ (ℤ‘0) → (0...𝑁) = ((0..^𝑁) ∪ {𝑁}))
6765, 66syl 17 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → (0...𝑁) = ((0..^𝑁) ∪ {𝑁}))
6867raleqdv 3144 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → (∀𝑦 ∈ (0...𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦) ↔ ∀𝑦 ∈ ((0..^𝑁) ∪ {𝑁})((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦)))
69 simpl1 1064 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → 𝑁 ∈ ℕ)
70 fveq2 6191 . . . . . . 7 (𝑦 = 𝑁 → ((2nd𝑈)‘𝑦) = ((2nd𝑈)‘𝑁))
71 fveq2 6191 . . . . . . 7 (𝑦 = 𝑁 → ((2nd𝑊)‘𝑦) = ((2nd𝑊)‘𝑁))
7270, 71eqeq12d 2637 . . . . . 6 (𝑦 = 𝑁 → (((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦) ↔ ((2nd𝑈)‘𝑁) = ((2nd𝑊)‘𝑁)))
7372ralunsn 4422 . . . . 5 (𝑁 ∈ ℕ → (∀𝑦 ∈ ((0..^𝑁) ∪ {𝑁})((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦) ↔ (∀𝑦 ∈ (0..^𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦) ∧ ((2nd𝑈)‘𝑁) = ((2nd𝑊)‘𝑁))))
7469, 73syl 17 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → (∀𝑦 ∈ ((0..^𝑁) ∪ {𝑁})((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦) ↔ (∀𝑦 ∈ (0..^𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦) ∧ ((2nd𝑈)‘𝑁) = ((2nd𝑊)‘𝑁))))
7568, 74bitrd 268 . . 3 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → (∀𝑦 ∈ (0...𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦) ↔ (∀𝑦 ∈ (0..^𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦) ∧ ((2nd𝑈)‘𝑁) = ((2nd𝑊)‘𝑁))))
7661, 75mpbird 247 . 2 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → ∀𝑦 ∈ (0...𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦))
7776ex 450 1 ((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) → (((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩) → ∀𝑦 ∈ (0...𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  {crab 2916  cun 3572  {csn 4177  cop 4183   class class class wbr 4653  cmpt 4729  cfv 5888  (class class class)co 6650  1st c1st 7166  2nd c2nd 7167  0cc0 9936  cle 10075  cn 11020  0cn0 11292  cuz 11687  ...cfz 12326  ..^cfzo 12465  #chash 13117  Word cword 13291   substr csubstr 13295  Vtxcvtx 25874  ClWalkscclwlks 26666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-substr 13303  df-wlks 26495  df-clwlks 26667
This theorem is referenced by:  clwlksf1clwwlk  26969
  Copyright terms: Public domain W3C validator